Page 24 of 24

[image: image1.png]An Informal Introduction to the SubLisp Programming Language

by Guyren G Howe, Cycorp

Introduction

SubLisp (“SubL”) is the functional programming language at the heart of the Cyc® Artificial Intelligence system. SubL is essentially a sublanguage of Common Lisp, simplified
 in order to permit efficient compilation.

This guide is an informal starting point for experienced programmers wishing to learn SubL. The OpenCyc website has a formal description of SubL and the Cyc® API. Since SubL closely reflects Common Lisp, the SubL documentation is written as a description of the differences between SubL and Common Lisp. The languages are sufficiently similar that a Common Lisp reference is a reasonable reference for a SubL programmer. Cycorp’s programmers pervasively use Steele, Common Lisp: The Language, Second Edition, ISBN 1-55558-041-6, (both because it is a very good reference, and because the SubL documentation describes its differences to Common Lisp against this book).

An overview of SubL

Briefly, SubL is a safe, garbage collected, strongly- and dynamically-typed functional programming language employing an s-expression syntax.

“Dynamically typed” means that values in SubL have types, but variables do not. Although you wouldn’t usually want to do it, a variable could hold an integer at one point in a program’s execution, and then a list at another. “Strongly typed” means that (with the exception of some standard numeric conversions) SubL doesn’t try to automatically convert one type to another to make operations legal. “Safe” means that SubL will usually automatically test that the operation you are performing is valid (so it automatically performs things like index bounds checking).

“Functional” means that programs are written as functions, and that functions are first-class objects in SubL: you can store functions in data structures, for example.

“S-expression syntax” means that SubL programs are written as SubL lists. This is the reason for all the parentheses in SubL code
. Since programs are expressed using a single, very simple native data structure, it means that programs can easily manipulate code. The result is that among other things that SubL is its own very capable macro language, and it is fairly easy to generate SubL code using other programming languages.

“Garbage collected” means that, as in a language such as Java, SubL code does not need to explicitly allocate or deallocate memory. Memory occupied by values that are no longer in use (meaning, values no longer referenced by a variable that is in scope) is recycled automatically.

Lists and Function Calls

Because they are so central to SubL, we begin with lists and function calls.

A list in SubL is just a sequence of items, either atomic (such as numbers, symbols and functions) or compound (such as another list). In SubL code, a list is written between parentheses, with the elements of the list separated by white space, like this:

(my-function 1 2 3 "Hello")

SubL assumes that a list appearing in code simply like this is a function call: the first element of the list is the name of the function, and the rest of the list constitutes the arguments to the function. When SubL encounters such an expression, it executes the function and returns its results.

If you want to construct a list as a data structure in your code, put a quote symbol (a non-curly single quote) immediately before it:

'(1 2 3 "Hello")

As you can see in this example, strings are written between inch marks (non-curly double quotes). Note that you usually need to write a list like this, even if it doesn’t have a function as its first argument, because SubL will assume that you intend the list to be executed, and will produce an error if you try to use the above list without the quote. However, in some cases, arguments to certain forms are assumed to be a list already, and should not have the quote mark placed in front of them.

You can nest function calls within function calls, by putting lists within lists, like this:

(my-func 1 2

(my-other-func "Hello" '(1 2 3) ())

(my-other-other-func 1 2))

Such an expression is evaluated inside-out, left to right. So the above code would execute first my-other-func, then my-other-other-func, then the results of these function calls would be used as the third and fourth arguments in a call to my-func. Since returns, spaces and tabs are all just white space, it is customary to use multiple lines and indentation to help the reader to follow the structure of the function.

SubL identifiers are case-insensitive, but it is customary to employ all lower-case identifiers, with parts of identifiers separated by dashes.

Note that SubL functions can have a variable number of arguments, or arguments identified by keyword rather than place (see the discussion of Keywords below for more on keyword arguments).

Some Examples

The Cyc® prompt will evaluate whatever you type into it and display the result, so you can try any of the examples below by typing it and pressing Enter. Alternatively, the Cyc® browser offers a SubL tool that evaluates and displays the results of a SubL expression. In what follows, what you type is shown in normal Courier text, what Cyc® displays is shown in Bold.

Cyc(AUTONUMOUT):"Hello"
"Hello"

If you just type a value without a function call, that value is simply displayed. (Another way of saying this is that such a thing evaluates to itself):

Cyc(AUTONUMOUT):'(1 2 "Hello")
(1 2 "Hello")
Note that Cyc® doesn’t display the quote in front of lists it is showing you. If you are copying a list Cyc® is displaying for use in your code, don’t forget to put the quote in front of it. More examples:

Cyc(AUTONUMOUT):(+ 3 4)
7

Cyc(AUTONUMOUT):(+ 3 4 5)
12

The SubL + function returns the sum of its arguments. It will automatically convert integers to floating-point numbers:

Cyc(AUTONUMOUT):(+ 3 4 5.0)
12.0d0

Note that 5.0 is considered a floating-point number.

Cyc(AUTONUMOUT):(+ 1 2 (* 5 2))
13

Note how the simple, strict evaluation order means that there is no need for operator precedence rules.

Cyc(AUTONUMOUT):()
NIL

() is the empty list in SubL. It can also be written as nil.

Cyc(AUTONUMOUT):'(+ 1 2)
(+ 1 2)

The quote mark in front of the expression prevents the function from being evaluated, so we just get a list, the first element of which is a function.

Manipulating Lists

SubL provides a rich collection of functions for manipulating lists. There are too many such functions to cover here (see, for example, the separate document Pattern-based Matching and Transformation). Here are some of the most important functions:

car, cdr, cadr, cddr etc

You can get the first element of a list with the car function:

Cyc(AUTONUMOUT):(car '(1 2 3))
1

And the list consisting of all but the first element (usually called the tail of the list) with the cdr function:

Cyc(AUTONUMOUT):(cdr '(1 2 3))
(2 3)

You can thus use various nestings of these two functions to get at any particular element of a list. For example, you can get the second element of the list with:

Cyc(AUTONUMOUT):(car (cdr '(1 2 3)))
2

The funny names of these functions lend themselves to a collection of abbreviations for various nestings of them. You can, for example, also get the second element of the list with:

Cyc(AUTONUMOUT):(cadr '(1 2 3))
2

Similarly, you can get the first element of the list that is the first element of a list with:

Cyc(AUTONUMOUT):(caar '((1 2 3) 4 5)))
1

SubL has these convenience functions up to two nestings of car and cdr (so we have cadr but not caddr).

There are some other, perhaps friendlier functions for common operations:

Cyc(AUTONUMOUT):(first '(1 2 3))
1

Cyc(AUTONUMOUT):(second '(1 2 3))
2

Cyc(AUTONUMOUT):(tenth '(1 2 3 4 5 6 7 8 9 10))
10

Cyc(AUTONUMOUT):(list-length '(1 2 3))
3

Cyc(AUTONUMOUT):(nth 0 '(1 2 3))
1

Cyc(AUTONUMOUT):(nth 9 '(1 2 3 4 5 6 7 8 9 10))
10

Note that nth is 0-based.

Cyc(AUTONUMOUT):(last '(1 2 3))
(3)

There are many other functions to do just about anything you can imagine to a list, all documented on the OpenCyc website’s documentation section.

cons

A list written out in SubL is actually a convenient representation for a structure composed of a chain of pairs of values called cons cells (also known as dotted pairs). You write a cons cell like a list, but with an infix period:

Cyc(AUTONUMOUT):'(1 . 2)
(1 . 2)

A regular list is a sequence of cons cells where a list element is in the first cell, and the tail of the list at that point is in the second cell, and the last element of the list has nil as its tail. So the list ‘(1 2 3) is identical to the structure ‘(1.(2.(3.nil))). Note that this is not the same thing as ‘(1.(2.(3))), which is not a regular list at all (it is known as a dotted list, and you will encounter such a list rarely).
Note that you can also think of cons as a way of adding an element to the front of a list:

Cyc(AUTONUMOUT):(cons 1 '(2 3))
(1 2 3)

Creating Functions

A function is created by a define form:

Cyc(AUTONUMOUT):(define square-it (x) (ret (x * x)))
SQUARE-IT

Cyc(AUTONUMOUT):(square-it 2)
4

A SubL function declaration consists of the keyword define, followed by the name of the function to be created, a list of the arguments to the function, and then a list of one or more expressions. The last item in this list must end with a ret expression, which returns the result of the function. Note that the only reason to have more than one expression in the body of the function is for side effect, which we will get to presently.

To call a function referred to by a variable, use the apply or funcall forms.

Cyc(AUTONUMOUT):(apply '+ '(1 2 3))
6

Cyc(AUTONUMOUT):(funcall '+ 1 2 3)
6

These are actually functions that take a function as one of their arguments. You will see more functions that take functions as arguments like this in the section on Looping and Similar Constructs.

Note that it was necessary to quote the function name.

Comments

Everything on a line after a semicolon (where that semicolon doesn’t appear inside a string) is ignored. The convention is to use comments preceded by one semi-colon to comment on the particular line on which they occur. Comments preceded by two semi-colons concern the state of the program at that point. Triple-semicolon comments usually occur in the left margin, and are used to document whole programs or large code blocks. Quadruple-semicolon comments usually indicate titles of whole programs or large code blocks.

Note also that function definitions can begin their bodies with a string, which is considered documentation for the function:

Cyc(AUTONUMOUT):(define square-it (x) "Return the square of the argument" (ret (x * x)))
SQUARE-IT

Variables

Local Variables

Local variables are introduced with the clet construct. x and y in the following example persist only while the form is being executed:

Cyc(AUTONUMOUT): (clet ((x (sin 1))
((y cos 1)))
(print x)
(print y))
0.8414709848078965
0.5403023058681398 0.5403023058681398

The first argument to the clet is a list of variables to be introduced. Each can either take the form of the variable name alone, or a list consisting of the variable name and an expression to be evaluated to obtain the initial value of the variable. Scope is lexical, extent is dynamic, and variable names from outer scopes appearing as new variable names in inner scopes will hide the value in the outer scope. Thus:

Cyc(AUTONUMOUT):(clet ((x 1) (clet ((x 2)) (print x)) (print x))
2
1 1

The final value is displayed twice because the print function returns its argument, so it is displayed as the result of the expression.

Note that it will not be particularly unusual to do much of the work of the function in the variable assignment part of the clet construct, and to have a smaller “body” part. In many such cases, the body part will be nothing much more than a ret.

Variables can be bound to new values with the csetq form. Thus:

Cyc(AUTONUMOUT):(clet (x) (csetq x 1) (print x))
1 1

and:

Cyc(AUTONUMOUT):(clet (x) (csetq x 1) (print x) (csetq x "Hello") (print x))
1
"Hello" "Hello"

It is also often possible to assign to an object whose value is identified by an expression, using csetf, as in:

Cyc(AUTONUMOUT):(clet ((x '(1 2 3))) (csetf (car x) 7) (print x))
(7 2 3) (7 2 3)

Note that there are some other functions that are often clearer alternatives to csetf expressions, such as rplaca.

A function can return more than one value, using the values form:

Cyc(AUTONUMOUT):(define sin-cos (x) (ret (values (sin x) (cos x))))
SIN-COS

Cyc(AUTONUMOUT):(sin-cos 1)
0.8414709848078965
0.5403023058681398

To use these values, we have the cmultiple-value-bind expression, which creates local variables, just like clet:

Cyc(AUTONUMOUT):(cmultiple-value-bind (x y) (sin-cos 1) (print x) (print y))
0. 8414709848078965
0.5403023058681398 0.5403023058681398

Note that cmultiple-value-bind will not try to evaluate the variables list (second) argument, so you should not put a quote mark in front of it (just as you don’t need to with the arguments list for define).

A commonly used feature similar to cmultiple-value-bind, cdestructuring-bind, lets you pull apart a complex value:

Cyc(AUTONUMOUT):(define some-fun () (ret ‘(1 2 (3 4))))
SOME-FUN

Cyc(AUTONUMOUT):(cdestructuring-bind (a b (c d)) (some-fun) (print a) (print b) (print c) (print d))
1
2
3
4 4

Note in passing how to define and call a function with zero arguments.

You should read the documentation on cdestructuring-bind, because it is very useful. For example, assuming the same definition of some-fun:

Cyc(AUTONUMOUT):(cdestructuring-bind (a b c) (some-fun) (print a) (print b) (print c))
1
2
(3 4) (3 4)

Also note that you can use cdestructuring-bind to pull apart a dotted pair:

Cyc(AUTONUMOUT):(cdestructuring-bind (a . b) '(1 . 2) (print a) (print b))
1
2 2

There are also looping and other constructs such as cdo, which we will discuss later, that also create local variables.

Note that it will be common to write recursive code, but the Cyc® SubL runtime environment does not provide tail-recursion elimination. Also, be aware that presently, an application that exceeds the stack size will fail with a segmentation fault.

It is important to note that variables “holding” values other than atomic values such as numbers and strings keep their values by reference, which means that copying a variable actually just copies the reference (much as in Java). For example:

Cyc(AUTONUMOUT):(clet ((x '(1 2 3)) (y x)) (csetf (car x) "Hello”) (print y))
("Hello" 2 3) ("Hello" 2 3)

Special Variables

There are a couple of different ways of declaring a persistent global (“special”) variable in SubL. defvar declares a variable name to have global scope. The variable name must begin and end with an asterisk:

Cyc(AUTONUMOUT):(defvar *x* 1)
x

Cyc(AUTONUMOUT):x
1

defparameter is similar. The difference is apparent when a world is saved and reloaded (through the browser or the function write-image). On loading a saved world, the value of a defvar variable retains the value it had when the world file was saved, while the value of a defparameter variable will be reset to its initialization value in the code.

Constants

Constants can be declared with the defconstant form:

Cyc(AUTONUMOUT):(defconstant *cycorp-address* "www.cyc.com")

Cyc(AUTONUMOUT):*cycorp-address*
"www.cyc.com"

As with defvar and defparameter, the constant’s name must begin and end with an asterisk.

Conditionals and Boolean Values

SubL’s representation of Booleans is by treating nil as false and anything else as true. The value T is provided for an explicit true value. This is often convenient (for example, see the print-complex function in the section on defstruct, below).

SubL provides a range of functional and procedural ways of altering program flow according to Boolean values, and many predicates (functions returning T or nil, not to be confused with predicates in CycL).

Cyc(AUTONUMOUT):(> 1 2)
NIL

Cyc(AUTONUMOUT):(< 1 2)
T

Cyc(AUTONUMOUT):(pwhen (> 1 2) (print "That’s weird"))
NIL

Cyc(AUTONUMOUT):(pif (> 1 2) (print "Things are awry") (print "Reality is normal"))
"Reality is normal" "Reality is normal"

pif is the procedural form of a traditional if. There is also a functional form, fif, which is much like the If function in, say, a spreadsheet program:

Cyc(AUTONUMOUT):(print (fif (> 1 2) "Things are awry" "Reality is normal"))
"Reality is normal" "Reality is normal"

There are also equivalents of switch or case from other languages, and some other constructs. See the SubL language guide for more details.

Data Structures

Keywords

Fulfilling the role occupied by the likes of enumerated types in other languages (basically, an opaque symbol) is the keyword. A keyword is just an identifier beginning with a colon, and it evaluates to itself. There is no need to declare a keyword; just use it. All you can do with a keyword is check its identity with another keyword, or print it.

Cyc(AUTONUMOUT):(print :blarg)
:BLARG :BLARG

Using Lists as Sets

There is a large collection of functions that lets you treat a list as a set. For example, member determines whether something is found anywhere in the list.

Cyc(AUTONUMOUT):(member "x" '(1 2 3 "x"))
("x")

Cyc(AUTONUMOUT):(member :x '(1 2 3 "x"))
NIL

adjoin adds an item to a list if it is not already in the list:

Cyc(AUTONUMOUT):(adjoin 1 '(1 2 3))
(1 2 3)

Cyc(AUTONUMOUT):(adjoin :x '(1 2 3))
(:X 1 2 3)

You should familiarize yourself with the other such functions in the Opencyc SubL documentation.

Association Lists

An association list (also called an a-list) is an important data structure in LISP-type programming languages. An a-list consists of a list of pairs (conses), and is treated as a mapping from the first elements of the pairs to their second elements. But note that an existing value can be shadowed by inserting an alternative mapping at the front of the list.

Cyc(AUTONUMOUT):(assoc :r '(("Hello" . 1) (:r . "cyc") (:x . '(1 2 3)) (:r . '(1 2)))
(:R . "cyc")

Again, you should familiarize yourself with the discussion of association lists in the SubL documentation.

Hash Tables

SubL provides hash tables, which provide a mapping. From one SubL object (the “key”) to another (the “value”). A hash table is created with make-hash-table (which lets you set how equality testing is done: see the documentation, and the discussion of equality below). make-hash-table must take an initial size argument (but note that if the initial size is exceeded, the hash table will be enlarged automatically).

Cyc(AUTONUMOUT):(csetq h (make-hash-table 8))

Entries can be added to the table with sethash:

Cyc(AUTONUMOUT):(sethash 1 h '(1 2 3))

Cyc(AUTONUMOUT):(sethash :a h "Hello")

Cyc(AUTONUMOUT):(sethash "xyz" h 1)

Entries can be fetched with gethash, which returns two values, the first being the value associated with the provided key, or nil if there is no such value, the other is T or nil (see the discussion of Boolean values below) to indicate whether the key was present.

Cyc(AUTONUMOUT):(gethash :a h)
"Hello"
T

Cyc(AUTONUMOUT):(gethash :x h)
NIL
NIL

There are other operations to remove hash table entries, to loop over the contents of a hash table, and so on. See the documentation for details.

Backquote

Just as the likes of cdestructuring-bind facilitates pulling apart list structures, backquote (`) facilitates assembling them.

` is generally the top left of a QWERTY keyboard. It functions like quote, except a comma can be inserted in front of an element of the list, to indicate that it should be evaluated and its results inserted in the resulting list in its place. For example:

Cyc(AUTONUMOUT):(csetq x '(1 2 3))
(1 2 3)

Cyc(AUTONUMOUT):`(:a "Hello" ,x)
(:a "Hello" (1 2 3))

Commas and backquotes can be nested, which is principally useful in constructing macros (below). You can also employ a ,@somelist within a backquote. This will insert all of the contents of somelist in that place, rather than the list itself.

Cyc(AUTONUMOUT):`(1 2 ,@(3 4) ,(5 6))
(1 2 3 4 (5 6))

Defstruct

defstruct is the means of defining new data types in SubL, similar to a C struct. A single defstruct form being evaluated actually results in the definition of a number of functions. The defstruct form itself takes a list of names for properties of the structure, along with optional declarations for a function to print the structure, and a prefix for the function names that will be created. An example:

Cyc(AUTONUMOUT):(defstruct (complex) real-part imaginary-part)
COMPLEX

The above results in the definition of the following functions:

· make-complex, which creates a new complex object, with all its properties set to nil;

· complex-real-part, which returns the real-part component of a complex object;
· complex-imaginary-part, which returns the imaginary-part component of a complex object; and
· complex-p, which returns T when passed a complex object, nil for anything else.
Note that you can use complex-real-part and complex-imaginary-part with csetf:

Cyc(AUTONUMOUT):(csetq x (make-complex))
#<COMPLEX 45D2cDF0>

Cyc(AUTONUMOUT):(csetf (complex-real-part x) 1)
1

Cyc(AUTONUMOUT):(csetf (complex-imaginary-part x) –1)
-1

Cyc(AUTONUMOUT):(complex-real-part x)
1

Cyc(AUTONUMOUT):(print x)
#<COMPLEX 45D2cDF0>

Obviously, this printing behavior is undesirable. defstruct also supports an optional :print-function argument to define a function to print a structure in a more useful fashion:

Cyc(AUTONUMOUT):(define print-complex (x stream depth)

(ignore depth)

(print
(fif
(cand (complex-real-part x) (complex-imaginary-part x))

(cconcatenate
(str (complex-real-part x))

"+"

(str (complex-imaginary-part x))

"i")

"Uninitialized complex number")

stream)

(ret x))

A print function must take three arguments: the object to be printed, a stream (see below) and a depth. Depth is provided so that printing of complex data structures can be constrained. If you wish to respect depth, you should only print the full representation of the object if depth is less than or equal to *print-level*. Otherwise, you should print a hash sign #.

Now, we can define a friendlier complex:

Cyc(AUTONUMOUT):(defstruct (complex (:print-function print-complex) real-part imaginary-part)
COMPLEX

Cyc(AUTONUMOUT):(csetq x (make-complex))
"Empty complex number"

Cyc(AUTONUMOUT):(csetf (complex-real-part x) 1)
1

Cyc(AUTONUMOUT):(csetf (complex-imaginary-part x) –1)
-1

Cyc(AUTONUMOUT):x
"1 + -1i"
Program Forms and Side-Effect
Despite the emphasis on expressing your program as functions, there are times when it is convenient to express part of a program as a sequence of “actions”. Since these actions are not being executed for their return value, they must be being executed for side-effect, so they must be changing the value of some separate state: the value of a variable, an output to a stream (see below), a display on the screen, or similar.

Most of the forms in SubL permit you to just provide a list as the body, and all but the last will be executed for side-effect, in order. But some forms do not. For these situations, the progn form is provided.

Equality

There are several equality predicates in SubL, shown from most to least specific:

· (eq x y) is true if x and y are the same actual object (implementationally, they address the same memory location). Note that numbers, strings and lists that look the same are not necessarily eq;

· (eql x y) is true if x and y are eq, if they are numbers of the same type with the same value, or if they are character objects representing the same character;

· (equal x y) is true if x and y are structurally identical objects: roughly speaking, their printed representations are the same; and

· (equalp x y) is true if x and y are equal; or if they are strings, if they are equal ignoring case; and if they are numbers, they represent the same value, even if they are of different types.

Cyc(AUTONUMOUT):(eq x x)
T

Cyc(AUTONUMOUT):(eq "x" "x")
NIL

Cyc(AUTONUMOUT):(eql "x" "x")
NIL

Note that one-character strings are not characters. The first example that follows compares characters:

Cyc(AUTONUMOUT):(eql #\x #\x)
T

Cyc(AUTONUMOUT):(eql 1 1)
T

Cyc(AUTONUMOUT):(eql 1 1.0)
NIL

Cyc(AUTONUMOUT):(eql '(1 2 3) '(1 2 3))
NIL

Cyc(AUTONUMOUT):(equal '(1 2 3) '(1 2 3))
T

Cyc(AUTONUMOUT):(equal "xyz" "xyz")
T

Cyc(AUTONUMOUT):(equal "xyz" "Xyz")
NIL

Cyc(AUTONUMOUT):(equalp "xyz" "Xyz")
T

Looping and Similar Constructs

SubL supports both traditional iteration constructs, and more functional-style constructs.

loop

loop is the most general iteration construct. It simply executes its body repeatedly. It must be terminated explicitly, with something like a ret or throw (throw is discussed below):

Cyc(AUTONUMOUT):(clet ((x '(1 2 3))

(loop

(pwhen (equal (car x) 3) (progn (print "Done!") (ret nil)))

(print x)

(csetq x (cdr x))))
(1 2 3)
(2 3)
"Done!"
Error: Attempting to throw NIL to unknown catch tag #<SPECIAL 30>.
[Switching to single-threaded mode]

Select a restart:

0: Return to top-level read loop.

1: Recursive read loop.

2: Signal the debugger.

3: Exit program.
?

(We get the error in this case because we executed the function from the command loop, so there was nowhere for the function to return its results "to").

cdo

cdo is the SubL equivalent of a for loop in C. It takes the following arguments, in order:

1. A list defining the variables to be used in the iteration. Each of these is a list of one to three elements, these being the variable, an expression for the initial value of the variable, and a step form giving the new value of the variable each time through the loop. If the initial value is not present, it is taken to be nil. If the step is not present, the do does not itself change the variable's value (although the body of the loop may do so);

2. An end-test, optionally followed by a result form. Each time through the loop, the end test is evaluated. If it returns nil, the body of the loop is evaluated. If the end-test does not return nil, the return value is evaluated and returned; and

3. The body of the loop.

As with C-style for loops, it will not be uncommon to have an empty body. For example:

Cyc(AUTONUMOUT):(cdo
(
(x '(1 2 3) (cdr x))

(y (car x) (car x)))

((eql y 3) (print "Done!"))

nil)
"Done!" "Done!"

cdolist

cdolist is a convenient way to process the elements of a list (although see Mapping, below). This form executes its body once for each element of a list, binding a variable to each element as it goes:

Cyc(AUTONUMOUT):(cdolist (x '(1 2 3)) (print x))
1
2
3 NIL

csome

csome is similar to cdolist, but it provides a means of terminating the iteration early. It takes the same form as cdolist, except that the initial argument must have a third variable name provided, and the variable is not bound by this construct (so it must have come from some enclosing scope, typically a clet). If at the end of execution of the body, this variable is not nil, the loop will be terminated. For example:

Cyc(AUTONUMOUT):(clet ((y nil))

(csome (x '(1 2 3) y)

(progn

(print x)

(pwhen (eql x 2) (csetq y t)))))
1
2
NIL

cdotimes

codotimes provides a simple count-up-to iteration.

Cyc(AUTONUMOUT):(cdotimes (x 3) (print x))
0
1
2

cdohash

cdohash is similar to cdolist, except that it iterates over the contents of a hash table.

Mapping

Mapping in a functional language refers to applying a function to the elements of a data structure (typically a list). This is often a clearer and more concise way of performing an operation than using a traditional loop would be. Each of these functions takes a function and one or more lists as arguments. The function must take as many arguments as there are lists, and they constrain the results to the length of the shortest list.

mapcar

mapcar applies the function to every element of the lists, accumulating the results into a new list:

Cyc(AUTONUMOUT):(mapcar #'+ '(1 2 3) '(1 2))
(2 4)

Cyc(AUTONUMOUT):(mapcar #'abs '(-1 –2 3))
(1 2 3)

maplist

maplist applies the function to each entire list, and then to each successive cdr of each of the lists.

Cyc(AUTONUMOUT):(define foofun (x) (ret (cons :foo x))
FOOFUN

Cyc(AUTONUMOUT):(maplist #'foofun '(1 2 3))
((:FOO 1 2 3) (:FOO 2 3) (:FOO 3))

mapc and mapl

mapc and mapl are like mapcar and maplist, except that they don't accumulate the results into a list (thus, they are called for side-effect).

mapcan and mapcon

mapcan and mapcon are like mapcar and maplist, except that the results of the function are joined with nconc (which joins lists, omitting nil).

Cyc(AUTONUMOUT):(define integerp-list (x) (pwhen (integerp x)(ret (list x)))
INTEGERP-LIST

Cyc(AUTONUMOUT):(mapcan #'integerp-list '(1 2 :a 3))
(1 2 3)

Strings and format

SubL provides robust string manipulation facilities. Most of these features are easily understood from the documentation, but a particular string construction function deserves pointing out: format.

format is a remarkably capable way of constructing a string out of various parts. The documentation in the printed second edition of Steele runs to twenty-eight pages.

Briefly, format takes a destination (it can be used to write directly to a stream, or to return its results if the destination is nil, see Streams below for more detail on the former), a template string, and some arguments. The arguments are inserted into the format string, subjected to various processing operations in the process, which are governed by special directives in the formatting string.

These formatting directives are introduced by the special ~ (tilde) character. Following the tilde will be optional prefix parameters separated by commas, optional colon (:) and at-sign (@) modifiers, and a single character indicating what kind of directive it is. For example:

· "~S" ;A ~S directive with no options;

· "~,+4:@S" ; A ~S directive with omitted first argument (so it takes its default value), the : and @ sign options.

Some examples (taken from Steele):

Cyc(AUTONUMOUT):(format nil "The answer is ~D." 5)
"The answer is 5."

Cyc(AUTONUMOUT):(format nil "The answer is ~3D." 5)
"The answer is 5."

Cyc(AUTONUMOUT):(format nil "The answer is ~3,'0D." 5)
"The answer is 005."
From here, it will be most productive to read the Common Lisp documentation, noting that SubL only supports the escapes ~A ~a ~S ~s ~D ~d (with width and pad parameters optional) ~C ~c ~G ~g ~% ~~.
Streams

The term stream in SubL encompasses files, network sockets, stdin/stdout and the like. The SubL streams functions work, respecting the necessary differences, essentially the same with all of these.

All streams can be closed with the close function, which takes the stream as a single argument.

Printed representations

We've already seen the print and format functions, which produce textual representations of SubL objects. The converse of these is read, which can turn most of these textual representations back into the objects from which they were made. Documenting this facility is outside the scope of this document; refer to Steele and the SubL documentation for details.

Other than the ability to read SubL forms, SubL also provides read-line and read-char basic input functions, as well as a read-byte function for reading from non-text streams.

Standard streams

SubL provides the following pre-defined standard streams: *standard-input*, *standard-output*, *error-output* and *null-output*.

TCP and higher-level network streams

SubL supports the open-tcp-stream function to create a TCP stream suitable for use with read, format and the like. It takes two arguments, a host (IP address or domain name) and a port number. SubL provides a macro based on open-tcp-stream that supports easy access to http streams. See the separate document Evaluatable Functions, expansion, afterAdding and afterRemoving — and a Thin Network API for an example.

Files

SubL provides open-text and open-binary functions to open a file as a stream. There are also the with-text-file and with-binary-file forms that make it easy to just loop over the contents of a file. There are also functions for other expected file operations (rename, delete, accessing directories and so on). SubL also provides robust cross-platform file path manipulation facilities.

Error Handling

throw and catch
SubL provides a form of the now-standard throw-catch facility for dynamic non-local exits.

catch takes three arguments: a tag, a variable (which must already exist in an enclosing scope), and a body. The body is executed. If a throw occurs during the execution of the body (that is, not just within the text of the body, but during the period in which it is being executed), with a tag matching the tag in the catch, then execution of the body is terminated, the value returned by the catch is assigned to variable, the entire catch form ends, and the context following the catch form is resumed.

throw takes two arguments, a tag and a value. It immediately returns control to the innermost active catch form matching the tag.

All this is tricky to describe. An example will perhaps make this clearer:

Cyc(AUTONUMOUT):(clet (res)

(ccatch :odd-result res

(cdolist (x '(4 2 1 0) (pif (oddp x)

(throw :odd-result x)

(print x))))

(pwhen res

(print (cconcatenate (str res) " was odd!"))))
4
2
"1 was odd!"
"1 was odd!"

cunwind-protect

Along with throw and catch, you will find cunwind-protect very useful. cunwind-protect takes as arguments two forms to be evaluated. Whether or not the first form performs any throws, the second form will be evaluated before the catching context is activated. This means that if you are doing, say, some file processing, you can be sure that the file is closed even if the processing code throws an error.

Cyc(AUTONUMOUT):(clet (res)

(ccatch :odd-result res

(cunwind-protect

(cdolist (x '(4 2 1 0) (progn

(pwhen (oddp x)

(throw :odd-result x))

(print x))))

(print "This gets executed, no matter what!"))

(pwhen res

(print (cconcatenate (str res) " was odd!"))))
4
2
"This gets executed, no matter what!"
"1 was odd!"
"1 was odd!"

Macros

An enormously useful feature of SubL is the ability for code to generate code. While many languages have the ability to generate code programmatically, it works particularly well in languages such as SubL that employ an s-expression syntax, because rather than generating strings and then executing them, the macro generates code at the syntax tree level. This both an order of magnitude easier than in other languages, but also enormously expressive. In fact, many of the features discussed elsewhere in this document are in fact macros.

Macros are defined using defmacro, and they should return a list that is a valid SubL form (including, potentially multiple levels of macro expansions, or one or more further defmacros).

Macros constitute the most important use of the abovementioned backquote facility. For example, here is a definition for an until loop:

Cyc(AUTONUMOUT):(defmacro until (test &body body)

 "Repeatedly evaluate BODY until TEST is true."

 (ret `(cdo ()(,test) ,@body)))

Run-time Evaluation

SubL supports an eval function that takes a string, evaluates it and returns the result.

ResearchCyc

� Most notably, SubL does not support anonymous functions or closures.

� The acronym LISP, which really stands for LISt Processing, is sometimes jokingly interpreted as “Lots of Insane Silly Parentheses”.

� The strange names of the car and cdr functions are for historical reasons: they are named for the machine-language Content of Address Register and Content of Decrement Register instruction used to implement them on the IBM 704 computer. As you will see, the names support a happy abbreviation for a collection of related functions.

An Informal Introduction to SubLisp

