MELD features/Appendix A/0

From Public Domain Knowledge Bank
(Redirected from MELD features/Appendix A)
Jump to: navigation, search
MELD features

Contents

Appendix A: Formulas true in every MELD KB

As we remarked above, the syntactic component of MELD includes a large number of constant terms (you can think of these as "reserved words" in the MELD language), and the semantic component of MELD includes a large number of sentences involving and interrelating these terms. This set of sentences forms a coherent self-sufficient KB -- the MELD KERNEL KB -- which forms the upper (most general) part of every MELD KB, including, e.g., the Cyc KB, the HPKB IKB, etc.

Herewith is that list of approximately 650 sentences -- each is a closed, well-formed MELD formula.

All of the MELD constants mentioned in these assertions should be thought of as MELD "reserved words." These terms, of which there are about 160, occur below on comment lines, just before the set of mandatory formulas involving them; each of those comment lines begins with three semicolons in a row; e.g., ;;; #$AntiSymmetricBinaryPredicate.

The formulas, and terms, are not commented or explained, below. If one browses through the Cyc KB or the HPKB IKB, one can read the documentation for each of these terms, etc. That is how you, a human reader, can most easily become familiar with the ontology and the semantics of MELD. Just as the BNF in Appendix C, the long list of formulas below (here in Appendix B) is provided more to be machine- than human- readable.

We've arranged these in such a fashion that (most) duplicates have been eliminated. Thus, in the case of one of the first few assertions,

(#$genls #$AntiSymmetricBinaryPredicate #$BinaryPredicate), 

that assertion is listed once, under ;;; #$AntiSymmetricBinaryPredicate, not again under ;;; #$BinaryPredicate.

We've prefixed each MELD term with the characters #$. This may facilitate reading mechanically; if you don't care or want this, just do a systematic replace of #$ by the empty string. It will be useful in distinguishing MELD constant names from the names of C (or Lisp) functions which are called to implement some of the low-level bookkeeping, and may be useful in distinguishing MELD constant names from numbers (e.g., distinguishing the MELD constant named 42 from the number 42.)

Let us reiterate that MELD is a declarative language with no procedural information of any kind in any MELD formula, including these formulas.

Finally, you may notice that about 10 of the 160 MELD constant terms below contain the word "Cyc"; this reflects the origins of those terms. We could just as well have called those ten . . .Cyc. . . terms . . .MELD. . . instead; the absolute names are not so important as agreeing on a fixed vocabulary of names for constants.

This is the MELD semantic standard; please do not rename any of these 160 terms, or remove/violate any of these 650 formulas:


;;; #$AntiSymmetricBinaryPredicate

001
(#$isa #$AntiSymmetricBinaryPredicate #$Collection )
002
(#$genls #$AntiSymmetricBinaryPredicate #$BinaryPredicate )
003
(#$implies 
   (#$and 
      (#$isa ?SLOT #$AntiSymmetricBinaryPredicate) 
      (#$isa ?SLOT #$IrreflexiveBinaryPredicate) ) 
   (#$isa ?SLOT #$AsymmetricBinaryPredicate)
)

;;; #$Assertion

004
(#$isa #$Assertion #$Collection)
005
(#$genls #$Assertion #$CycIndexedTerm)
006
(#$genls #$Assertion #$IndividualObject)


;;; #$AsymmetricBinaryPredicate

007
(#$isa #$AsymmetricBinaryPredicate #$Collection )
008
(#$genls #$AsymmetricBinaryPredicate #$AntiSymmetricBinaryPredicate )
009
(#$genls #$AsymmetricBinaryPredicate]] #$IrreflexiveBinaryPredicate )
010
(#$not (#$and 
     (#$isa ?PRED #$AsymmetricBinaryPredicate) 
     (?PRED ?ARG1 ?ARG2) 
     (?PRED ?ARG2 ?ARG1)
                       ) )
011
(#$implies 
   (#$and 
      (#$isa ?Q #$AsymmetricBinaryPredicate) 
      (#$genlPreds ?P ?Q)
   ) 
   (#$isa ?P #$AsymmetricBinaryPredicate)
)
012
(#$implies 
    (#$isa ?PRED #$AsymmetricBinaryPredicate) 
    (#$negationInverse ?PRED ?PRED)
)

;;; #$AttributeValue

013
(#$isa #$AttributeValue #$Collection)
014
(#$genls #$AttributeValue #$IndividualObject)

;;; #$BaseKB

015
(#$isa #$BaseKB #$BroadMicrotheory)
016
(#$implies 
   (#$isa ?MIC #$Microtheory) 
   (#$genlMt ?MIC #$BaseKB)
)

;;; #$BinaryPredicate

017
(#$isa #$BinaryPredicate #$Collection)
018
(#$genls #$BinaryPredicate #$Predicate)
019
(#$implies 
    (#$isa ?P #$BinaryPredicate) 
    (#$arity ?P 2 )
)

;;; #$BookkeepingMt

020
(#$isa #$BookkeepingMt #$Microtheory)
021
(#$genlMt #$BookkeepingMt #$CyclistsMt)
022
(#$genlMt #$BookkeepingMt #$BaseKB)

;;; #$BookkeepingPredicate

023
(#$isa #$BookkeepingPredicate #$Collection)
024
(#$genls #$BookkeepingPredicate #$Predicate)

;;; #$BroadMicrotheory

025
(#$isa #$BroadMicrotheory #$Collection)
026
(#$genls #$BroadMicrotheory #$Microtheory)

;;; #$Collection

see also  023. 025
027
(#$isa #$Collection #$Collection)
028
(#$genls #$Collection #$SetOrCollection)

;;; #$CollectionDenotingFunction

029
(#$isa #$CollectionDenotingFunction #$Collection)
030
(#$genls #$CollectionDenotingFunction #$ReifiableFunction )

;;; #$CommutativeRelation

031
(#$isa #$CommutativeRelation #$Collection)
032
(#$genls #$CommutativeRelation #$Relationship)

;;; #$CycELVariable

033
(#$isa #$CycELVariable #$Collection)
034
(#$genls #$CycELVariable #$CycSystemSymbol)

;;; #$CycExpression

035
(#$isa #$CycExpression #$Collection )
036
(#$genls #$CycExpression #$IndividualObject)

;;; #$CycFormula

037
(#$isa #$CycFormula #$Collection)
038
(#$genls #$CycFormula #$CycExpression)

;;; #$CycIndexedTerm

039
(#$isa #$CycIndexedTerm #$Collection)
040
(#$genls #$CycIndexedTerm]] #$Thing)

;;; #$CycSystemList

041
(#$isa #$CycSystemList #$Collection)
042
(#$genls #$CycSystemList #$IndividualObject)

;;; #$CycSystemString

043
(#$isa #$CycSystemString #$Collection)
044
(#$genls #$CycSystemString #$IndividualObject)

;;; #$CycSystemSymbol

045
(#$isa #$CycSystemSymbol #$Collection)
046
(#$genls #$CycSystemSymbol #$IndividualObject )

;;; #$Cyclist

047
(#$isa #$Cyclist #$Collection )
048
(#$genls #$Cyclist #$TemporalObject )

;;; #$CyclistsMt

049
(#$isa #$CyclistsMt #$Microtheory )
050
(#$genlMt #$CyclistsMt #$BaseKB)

;;; #$DefaultMonotonicPredicate

051
(#$isa #$DefaultMonotonicPredicate #$Collection)
052
(#$genls #$DefaultMonotonicPredicate #$Predicate)

;;; #$EvaluatableFunction

053
(#$isa #$EvaluatableFunction #$Collection)
054
(#$genls #$EvaluatableFunction #$FunctionTheMathematicalType )

;;; #$False

055
(#$isa #$False #$IndividualObject )

;;; #$Format

056
(#$isa #$Format #$Collection )
057
(#$genls #$Format #$IndividualObject )

;;; #$ForwardInferencePSC

058
(#$isa #$ForwardInferencePSC #$ProblemSolvingCntxt )
059
(#$genlMt #$ForwardInferencePSC #$BaseKB)


;;; #$FunctionTheMathematicalType

060
(#$isa #$FunctionTheMathematicalType #$Collection)
061
(#$genls #$FunctionTheMathematicalType #$Relationship)

;;; #$Guest

062
(#$isa #$Guest #$HumanCyclist ) 

;;; #$HumanCyclist

063
(#$isa #$HumanCyclist #$Collection )
064
(#$genls #$HumanCyclist #$Cyclist )

;;; #$IndividualObject

065
(#$isa #$IndividualObject #$Collection )
066
(#$genls #$IndividualObject #$Thing )

;;; #$InferenceRelatedBookkeepingPredicate

067
(#$isa #$InferenceRelatedBookkeepingPredicate #$Collection )
068
(#$genls #$InferenceRelatedBookkeepingPredicate #$BookkeepingPredicate )

;;; #$Integer

069
(#$isa #$Integer #$Collection )
070
( #$genls #$Integer #$RealNumber )


;;; #$IntervalEntry

071
( #$isa #$IntervalEntry #$Format)

;;; #$IrreflexiveBinaryPredicate

072
( #$isa #$IrreflexiveBinaryPredicate #$Collection )
073
( #$genls #$IrreflexiveBinaryPredicate #$BinaryPredicate )
074
(#$not (#$and 
   (#$isa ?PRED #$IrreflexiveBinaryPredicate) 
   (?PRED ?OBJ ?OBJ)
                 ) )
075
(#$implies 
   (#$and 
      (#$isa ?Q #$IrreflexiveBinaryPredicate) 
      (#$different ?P ?Q) 
      (#$genlPreds ?P ?Q)
   ) 
   (#$isa ?P #$IrreflexiveBinaryPredicate)
)

;;; #$ListTheFormat

076
(#$isa #$ListTheFormat #$Format)

;;; #$Microtheory

077
(#$isa #$Microtheory #$Collection )
078
(#$genls #$Microtheory #$IndividualObject)

;;; #$NonNegativeInteger

079
(#$isa #$NonNegativeInteger #$Collection)
080
(#$genls #$NonNegativeInteger #$Integer)


;;; #$NonPredicateFunction

081
(#$isa #$NonPredicateFunction #$Collection )
082
(#$genls #$NonPredicateFunction #$FunctionTheMathematicalType )

;;; #$PositiveInteger

083
(#$isa #$PositiveInteger #$Collection )
084
(#$genls #$PositiveInteger #$NonNegativeInteger )

;;; #$Predicate

085
(#$isa #$Predicate #$Collection)
086
(#$genls #$Predicate #$FunctionTheMathematicalType )

;;; #$ProblemSolvingCntxt

087
(#$isa #$ProblemSolvingCntxt #$Collection )
088
(#$genls #$ProblemSolvingCntxt #$Microtheory )

;;; #$QuaternaryPredicate

089
(#$isa #$QuaternaryPredicate #$Collection)
090
(#$genls #$QuaternaryPredicate #$Predicate )
091
(#$implies 
   (#$isa ?P #$QuaternaryPredicate ) 
   (#$arity ?P 4 )
)

;;; #$QuintaryPredicate

092
(#$isa #$QuintaryPredicate #$Collection)
093
(#$genls #$QuintaryPredicate #$Predicate)
094
 (#$implies 
    (#$isa ?P #$QuintaryPredicate ) 
    (#$arity ?P 5) )

;;; #$RealNumber

095
(#$isa #$RealNumber #$Collection )
096
(#$genls #$RealNumber #$AttributeValue )

;;; #$ReflexiveBinaryPredicate

097
(#$isa #$ReflexiveBinaryPredicate #$Collection )
098
(#$genls #$ReflexiveBinaryPredicate #$BinaryPredicate )
099
(#$implies 
    (#$isa ?PRED #$ReflexiveBinaryPredicate ) 
    (?PRED ?OBJ ?OBJ)
)

;;; #$ReifiableFunction

100
(#$isa #$ReifiableFunction #$Collection )
101
(#$genls #$ReifiableFunction #$NonPredicateFunction )

;;; #$ReifiableTerm

102
(#$isa #$ReifiableTerm #$ReifiableTerm )
103
(#$isa #$ReifiableTerm #$Collection )
104
(#$genls #$ReifiableTerm #$CycIndexedTerm )

;;; #$Relationship

105
(#$isa #$Relationship #$Collection)
106
(#$genls #$Relationship #$IndividualObject )

;;; #$Set-Mathematical

107
(#$isa #$Set-Mathematical #$Collection)
108
(#$genls #$Set-Mathematical #$SetOrCollection)

;;; #$SetOrCollection

109
(#$isa #$SetOrCollection #$Collection )
110
(#$genls #$SetOrCollection #$Thing )

;;; #$SetTheFormat

111
(#$isa #$SetTheFormat #$Format)

;;; #$SiblingDisjointAttributeType

112
(#$isa #$SiblingDisjointAttributeType #$SiblingDisjointCollection)
113
(#$genls #$SiblingDisjointAttributeType #$Collection)
114
(#$implies 
    (#$and 
      (#$isa ?C #$SiblingDisjointAttributeType ) 
      (#$isa ?A1 ?C ) 
      (#$isa ?A2 ?C ) 
      (#$different ?A1 ?A2 ) 
      (#$hasAttributes ?G072 ?A1 ) 
      (#$hasAttributes ?G072 ?A2 )
    ) 
    (#$or 
      (#$genlAttributes ?A1 ?A2) 
      (#$genlAttributes ?A2 ?A1)
    )
)

;;; #$SiblingDisjointCollection

115
(#$isa #$SiblingDisjointCollection #$Collection)
116
(#$genls #$SiblingDisjointCollection #$Collection)

;;; #$SingleEntry

117
(#$isa #$SingleEntry #$Format )

;;; #$SkolemFuncN

118
(#$isa #$SkolemFuncN #$ReifiableFunction)
119
(#$arity #$SkolemFuncN 3)
120
(#$arg1Isa #$SkolemFuncN #$CycSystemList)
121
(#$arg2Isa #$SkolemFuncN #$CycSystemSymbol )
122
(#$arg3Isa #$SkolemFuncN #$RealNumber)

;;; #$SkolemFunction

123
(#$isa #$SkolemFunction #$Collection)
124
(#$genls #$SkolemFunction #$ReifiableFunction)
125
(#$arity #$SkolemFunction 2 )
126
(#$arg2Isa #$SkolemFunction #$CycSystemSymbol)
127
(#$arg1Isa #$SkolemFunction #$CycSystemList)

;;; #$SubAbs

128
(#$isa #$SubAbs #$Format)

;;; #$SymmetricBinaryPredicate

129
(#$isa #$SymmetricBinaryPredicate #$Collection)
130
(#$genls #$SymmetricBinaryPredicate #$CommutativeRelation )
131
(#$genls #$SymmetricBinaryPredicate #$BinaryPredicate )
132
(#$implies 
    (#$and 
        (#$isa ?PRED #$SymmetricBinaryPredicate) 
        (?PRED ?ARG1 ?ARG2)
    ) 
    (?PRED ?ARG2 ?ARG1)
)
133
(#$implies 
    (#$isa ?PRED #$SymmetricBinaryPredicate ) 
    (#$genlInverse ?PRED ?PRED )
)

;;; #$TemporalObject

134
(#$isa #$TemporalObject #$Collection)
135
(#$genls #$TemporalObject #$IndividualObject )

;;; #$TernaryPredicate

136
(#$isa #$TernaryPredicate #$Collection )
137
(#$genls #$TernaryPredicate #$Predicate )
138
(#$not      (#$and 
    (#$isa ?X #$TernaryPredicate ) 
    (#$arg4Isa ?X ?Y )
                   )  )
139
(#$implies 
    (#$isa ?P #$TernaryPredicate ) 
    (#$arity ?P 3 )
)

;;; #$TheSet

140
(#$isa #$TheSet #$VariableArityRelation )

141
(#$isa #$TheSet #$NonPredicateFunction)

142
(#$resultIsa #$TheSet #$Set-Mathematical)

143
(#$argsIsa #$TheSet #$Thing )


;;; #$TheTerm

144
(#$isa #$TheTerm #$Collection )
145
(#$genls #$TheTerm  #$Thing )

;;; #$Thing

146
(#$isa #$Thing #$Collection )
147
(#$isa ?OBJ #$Thing)

;;; #$TransitiveBinaryPredicate

148
(#$isa #$TransitiveBinaryPredicate #$Collection )
149
(#$genls #$TransitiveBinaryPredicate #$BinaryPredicate)
150
(#$implies 
    (#$and 
        (#$isa ?U #$TransitiveBinaryPredicate ) 
        ( ?U ?X ?Z ) 
        ( ?U ?Z ?VAR3 )
    ) 
    ( ?U ?X ?VAR3 )
)

;;; #$True

151
(#$isa #$True #$IndividualObject )

;;; #$UnaryPredicate

152
(#$isa #$UnaryPredicate #$Collection )
153
(#$genls #$UnaryPredicate #$Predicate )
154
(#$implies 
    (#$isa ?P #$UnaryPredicate ) 
    (#$arity ?P 1 )
)

;;; #$UnaryTypePredicate

155
(#$isa #$UnaryTypePredicate #$Collection )
156
(#$genls #$UnaryTypePredicate #$UnaryPredicate )
157
(#$genls #$UnaryTypePredicate #$InferenceRelatedBookkeepingPredicate )

;;; #$VariableArityRelation

158
(#$isa #$VariableArityRelation #$Collection )
159
(#$genls #$VariableArityRelation #$Relationship )

;;; #$abnormal

160
(#$isa #$abnormal #$DefaultMonotonicPredicate )
161
(#$isa #$abnormal #$BinaryPredicate )
162
(#$arity #$abnormal 2 )
163
(#$arg1Isa #$abnormal #$CycSystemList )
164
(#$arg2Isa #$abnormal #$Assertion )

;;; #$afterAdding

165
(#$isa #$afterAdding #$InferenceRelatedBookkeepingPredicate )
166
(#$isa #$afterAdding #$BinaryPredicate )
167
(#$arity #$afterAdding 2 )
168
(#$arg1Isa #$afterAdding #$Predicate )
169
(#$arg2Isa #$afterAdding #$CycSystemSymbol )

;;; #$afterRemoving

170
(#$isa #$afterRemoving #$InferenceRelatedBookkeepingPredicate )
171
(#$isa #$afterRemoving #$BinaryPredicate )
172
(#$arity #$afterRemoving 2 )
173
(#$arg1Isa #$afterRemoving #$Predicate )
174
(#$arg2Isa #$afterRemoving #$CycSystemSymbol)

;;; #$and

175
(#$isa #$and #$CommutativeRelation )
176
(#$isa #$and #$VariableArityRelation )
178
(#$argsIsa #$and #$CycFormula )
179
(#$resultIsa #$and #$CycFormula )

;;; #$arg1Format

180
(#$isa #$arg1Format #$BinaryPredicate)
181
(#$arity #$arg1Format 2 )
182
(#$arg1Isa #$arg1Format #$Predicate )
183
(#$arg2Isa #$arg1Format #$Format )

;;; #$arg1Genl

184
(#$isa #$arg1Genl #$BinaryPredicate )
185
(#$arity #$arg1Genl 2 )
186
(#$arg1Isa #$arg1Genl #$Relationship )
187
(#$arg2Isa #$arg1Genl #$Collection )

;;; #$arg1Isa

188
(#$isa #$arg1Isa #$DefaultMonotonicPredicate )
189
(#$isa #$arg1Isa #$BinaryPredicate )
190
(#$arity #$arg1Isa 2)
191
(#$arg1Isa #$arg1Isa #$Relationship )
192
(#$arg2Isa #$arg1Isa #$Collection )


;;; #$arg2Format

193
(#$isa #$arg2Format #$BinaryPredicate )
194
(#$arity #$arg2Format 2 )
195
(#$arg1Isa #$arg2Format #$Predicate )
196
(#$arg2Isa #$arg2Format #$Format )

;;; #$arg2Genl

197
(#$isa #$arg2Genl #$BinaryPredicate )
198
(#$arity #$arg2Genl 2 )
199
(#$arg1Isa #$arg2Genl #$Relationship )
200
(#$arg2Isa #$arg2Genl #$Collection )

;;; #$arg2Isa

201
(#$isa #$arg2Isa #$DefaultMonotonicPredicate )
202
(#$isa #$arg2Isa #$BinaryPredicate )
203
(#$arity #$arg2Isa 2 )
204
(#$arg1Isa #$arg2Isa #$Relationship )
205
(#$arg2Isa #$arg2Isa #$Collection )

;;; #$arg3Format

206
(#$isa #$arg3Format #$BinaryPredicate)
207
(#$arity #$arg3Format 2 )
208
(#$arg1Isa #$arg3Format #$Predicate )
209
(#$arg2Isa #$arg3Format #$Format )

;;; #$arg3Genl

210
(#$isa #$arg3Genl #$BinaryPredicate)
211
(#$arity #$arg3Genl 2)
212
(#$arg1Isa #$arg3Genl #$Relationship)
213
(#$arg2Isa #$arg3Genl #$Collection)

;;; #$arg3Isa

214
(#$isa #$arg3Isa #$DefaultMonotonicPredicate )
215
(#$isa #$arg3Isa #$BinaryPredicate )
216
(#$arity #$arg3Isa 2 )
217
(#$arg1Isa #$arg3Isa #$Relationship )
218
(#$arg2Isa #$arg3Isa #$Collection )

;;; #$arg4Format

219
(#$isa #$arg4Format #$BinaryPredicate)
220
(#$arity #$arg4Format 2 )
221
(#$arg1Isa #$arg4Format #$Predicate)
222
(#$arg2Isa #$arg4Format #$Format)

;;; #$arg4Genl

223
(#$isa #$arg4Genl #$BinaryPredicate )

224
(#$arity #$arg4Genl 2)
225
(#$arg1Isa #$arg4Genl #$Relationship)
226
(#$arg2Isa #$arg4Genl #$Collection)

;;; #$arg4Isa

227
(#$isa #$arg4Isa #$DefaultMonotonicPredicate)
228
(#$isa #$arg4Isa #$BinaryPredicate)
229
(#$arity #$arg4Isa 2)
230
(#$arg1Isa #$arg4Isa #$Relationship)
231
(#$arg2Isa #$arg4Isa #$Collection)

;;; #$arg5Format

232
(#$isa #$arg5Format #$BinaryPredicate)
233
(#$arity #$arg5Format 2 )
234
(#$arg1Isa #$arg5Format #$Predicate)
235
(#$arg2Isa #$arg5Format #$Format)

;;; #$arg5Genl

236
(#$isa #$arg5Genl #$BinaryPredicate )
237
(#$arity #$arg5Genl 2 )
238
(#$arg1Isa #$arg5Genl #$Relationship )
239
(#$arg2Isa #$arg5Genl #$Collection )

;;; #$arg5Isa

240
(#$isa #$arg5Isa #$DefaultMonotonicPredicate)
241
(#$isa #$arg5Isa #$BinaryPredicate)
242
(#$arity #$arg5Isa 2)
243
(#$arg1Isa #$arg5Isa #$Relationship)
244
(#$arg2Isa #$arg5Isa #$Collection)

;;; #$argsGenl

245
(#$isa #$argsGenl #$BinaryPredicate)
246
(#$arity #$argsGenl 2 )
247
(#$arg1Isa #$argsGenl #$Relationship)
248
(#$arg2Isa #$argsGenl #$Collection)

;;; #$argsIsa

249
(#$isa #$argsIsa #$BinaryPredicate )
250
(#$arity #$argsIsa 2 )
251
(#$arg1Isa #$argsIsa #$Relationship )
252
(#$arg2Isa #$argsIsa #$Collection )

;;; #$arity

253
(#$isa #$arity #$DefaultMonotonicPredicate )
254
(#$isa #$arity #$BinaryPredicate )
255
(#$arity #$arity 2 )
256
(#$arg1Isa #$arity #$Relationship)
257
(#$arg2Isa #$arity #$Integer )

;;; #$coExtensional

258
(#$isa #$coExtensional #$SymmetricBinaryPredicate )
259
(#$isa #$coExtensional #$ReflexiveBinaryPredicate )
260
(#$isa #$coExtensional #$TransitiveBinaryPredicate)
261
(#$genlInverse #$coExtensional #$coExtensional )
262
(#$arity #$coExtensional 2 )
263
(#$arg1Isa #$coExtensional #$Collection )
264
(#$arg2Isa #$coExtensional #$Collection)

;;; #$comment

265
(#$isa #$comment #$BinaryPredicate )
266
(#$arity #$comment 2 )
267
(#$arg1Isa #$comment #$CycIndexedTerm )
268
(#$arg2Isa #$comment #$CycSystemString )

;;; #$cyclistNotes

269
(#$isa #$cyclistNotes #$BinaryPredicate )
270
(#$arity #$cyclistNotes 2 )
271
(#$arg1Isa #$cyclistNotes #$CycIndexedTerm )
272
(#$arg2Isa #$cyclistNotes #$CycSystemString )

;;; #$defnIff

273
(#$isa #$defnIff #$InferenceRelatedBookkeepingPredicate )
274
(#$isa #$defnIff #$BinaryPredicate )
275
(#$arity #$defnIff 2 )
276
(#$arg1Isa #$defnIff #$Collection )
277
(#$arg2Isa #$defnIff #$CycSystemSymbol )
278
(#$implies 
    (#$defnIff ?X ?Y ) 
    (#$defnSufficient ?X ?Y )
)

;;; #$defnNecessary

279
(#$isa #$defnNecessary #$BinaryPredicate)
280
(#$arity #$defnNecessary 2 )
281
(#$arg1Isa #$defnNecessary #$Collection)
282
(#$arg2Isa #$defnNecessary #$CycSystemSymbol)

;;; #$defnSufficient

283
(#$isa #$defnSufficient #$InferenceRelatedBookkeepingPredicate )
284
(#$isa #$defnSufficient #$BinaryPredicate )
285
(#$arity #$defnSufficient 2 )
286
(#$arg1Isa #$defnSufficient #$Collection )
287
(#$arg2Isa #$defnSufficient #$CycSystemSymbol)

;;; #$different

288
(#$isa #$different #$VariableArityRelation )
289
(#$isa #$different #$EvaluatableFunction )
290
(#$isa #$different #$Predicate )
291
(#$argsIsa #$different #$Thing )
292
(#$not 
    (#$different ?OBJ ?OBJ)
)

;;; #$disjointWith

293
(#$isa #$disjointWith #$DefaultMonotonicPredicate )
294
(#$isa #$disjointWith #$SymmetricBinaryPredicate )
295
(#$isa #$disjointWith #$IrreflexiveBinaryPredicate )
296
(#$genlInverse #$disjointWith #$disjointWith )
297
(#$arity #$disjointWith 2 )
298
(#$arg1Isa #$disjointWith #$SetOrCollection )
299
(#$arg2Isa #$disjointWith #$SetOrCollection )
300
(#$not      (#$and 
       (#$isa ?OBJ ?COL1) 
       (#$isa ?OBJ ?COL2) 
       (#$disjointWith ?COL1 ?COL2)
    )   )
301
(#$implies 
    (#$and 
        (#$disjointWith ?COL ?SUPERSET ) 
        (#$genls ?SUBSET ?SUPERSET )
    ) 
    (#$disjointWith ?COL ?SUBSET )
)
302
(#$not  (#$and 
    (#$disjointWith ?X ?Y) 
    (#$genls ?X ?Y)
            )   )

;;; #$elementOf

303
(#$isa #$elementOf #$BinaryPredicate)
304
(#$arity #$elementOf 2)
305
(#$arg1Isa #$elementOf #$Thing)
306
(#$arg2Isa #$elementOf #$SetOrCollection)

;;; #$equals

307
(#$isa #$equals #$DefaultMonotonicPredicate )
308
(#$isa #$equals #$SymmetricBinaryPredicate )
309
(#$isa #$equals #$ReflexiveBinaryPredicate )
310
(#$isa #$equals #$TransitiveBinaryPredicate )
311
(#$genlInverse #$equals #$equals )
312
(#$arity #$equals 2 )
313
(#$arg1Isa #$equals #$Thing )
314
(#$arg2Isa #$equals #$Thing )

;;; #$exceptFor

315
(#$isa #$exceptFor #$Relatio1nship)
316
(#$arity #$exceptFor 2)
317
(#$arg2Isa #$exceptFor #$Assertion)
318
(#$arg1Isa #$exceptFor #$ReifiableTerm )

;;; #$exceptWhen

319
(#$isa #$exceptWhen #$Relationship)
320
(#$arity #$exceptWhen 2 )
321
(#$arg2Isa #$exceptWhen #$Assertion)
322
(#$arg1Isa #$exceptWhen #$CycFormula)

;;; #$forAll

323
(#$isa #$forAll #$Relationship )
324
(#$arity #$forAll 2 )
325
(#$arg2Isa #$forAll #$CycFormula )
326
(#$arg1Isa #$forAll #$CycELVariable )

;;; #$genlAttributes

327
(#$isa #$genlAttributes #$ReflexiveBinaryPredicate)
328
(#$isa #$genlAttributes #$TransitiveBinaryPredicate)
329
(#$arity #$genlAttributes 2 )
330
(#$arg1Isa #$genlAttributes #$AttributeValue )
331
(#$arg2Isa #$genlAttributes #$AttributeValue)

;;; #$genlInverse

332
(#$isa #$genlInverse #$BinaryPredicate)
333
(#$arity #$genlInverse 2 )
334
(#$arg1Isa #$genlInverse #$BinaryPredicate )
335
(#$arg2Isa #$genlInverse #$BinaryPredicate )
336
(#$implies 
    (#$and 
        (#$genlInverse ?PRED ?GEN-PRED) 
        (?PRED ?ARG1 ?ARG2)
    ) 
    (?GEN-PRED ?ARG2 ?ARG1)
)
337
(#$implies 
    (#$and 
        (#$genlInverse ?SPEC-PRED ?PRED) 
        (#$genlInverse ?PRED ?GENL-PRED)
    ) 
    (#$genlPreds ?SPEC-PRED ?GENL-PRED)
)
338
(#$implies 
    (#$and 
        (#$genlInverse ?SPEC-PRED ?PRED) 
        (#$genlPreds ?PRED ?GENL-PRED)
    ) 
    (#$genlInverse ?SPEC-PRED ?GENL-PRED)
)
339
(#$implies 
    (#$and 
        (#$negationPreds ?GENL-PRED ?NEG-PRED ) 
        (#$genlInverse ?SPEC-PRED ?GENL-PRED )
    ) 
    (#$negationInverse ?NEG-PRED ?SPEC-PRED )
)
340
(#$implies 
    (#$and 
        (#$negationInverse ?GENL-PRED ?NEG-PRED ) 
        (#$genlInverse ?SPEC-PRED ?GENL-PRED )
    ) 
    (#$negationPreds ?NEG-PRED ?SPEC-PRED )
)
341
(#$implies 
    (#$and 
        (#$genlPreds ?SPEC-PRED ?PRED ) 
        (#$genlInverse ?PRED ?GENL-PRED )
    ) 
    (#$genlInverse ?SPEC-PRED ?GENL-PRED )
)

;;; #$genlMt

342
(#$isa #$genlMt #$DefaultMonotonicPredicate)
343
(#$isa #$genlMt #$AntiSymmetricBinaryPredicate )
344
(#$isa #$genlMt #$ReflexiveBinaryPredicate )
345
(#$isa #$genlMt #$TransitiveBinaryPredicate)
346
(#$arity #$genlMt 2)
347
(#$arg1Isa #$genlMt #$Microtheory )
348
(#$arg2Isa #$genlMt #$Microtheory )

;;; #$genlPreds

349
(#$isa #$genlPreds #$AntiSymmetricBinaryPredicate )
350
(#$isa #$genlPreds #$ReflexiveBinaryPredicate )
351
(#$isa #$genlPreds #$TransitiveBinaryPredicate )
352
(#$arity #$genlPreds 2 )
353
(#$arg1Isa #$genlPreds #$Predicate )
354
(#$arg2Isa #$genlPreds #$Predicate )
355
(#$implies 
    (#$and 
        (?PRED ?ARG1) 
        (#$genlPreds ?PRED ?GENL-PRED )
    ) 
    (?GENL-PRED ?ARG1)
)
356
(#$implies 
    (#$and 
        (#$negationPreds ?GENL-PRED ?NEG-PRED ) 
        (#$genlPreds ?SPEC-PRED ?GENL-PRED )
    ) 
    (#$negationPreds ?NEG-PRED ?SPEC-PRED )
)
357
 (#$implies 
     (#$and 
         (#$negationInverse ?GENL-PRED ?NEG-PRED ) 
         (#$genlPreds ?SPEC-PRED ?GENL-PRED )
     ) 
     (#$negationInverse ?NEG-PRED ?SPEC-PRED )
 )
358
(#$implies 
    (#$and 
        (#$genlPreds ?PRED ?GENL-PRED ) 
        (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 )
    ) 
    (?GENL-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 )
)
359
(#$implies 
    (#$and 
        (#$genlPreds ?PRED ?GENL-PRED) 
        (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4)
    ) 
    (?GENL-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4)
)
360
(#$implies 
    (#$and 
        (#$genlPreds ?PRED ?GENL-PRED) 
        (?PRED ?ARG1 ?ARG2 ?ARG3)
    ) 
    (?GENL-PRED ?ARG1 ?ARG2 ?ARG3)
)
361
(#$implies 
    (#$and 
        (#$genlPreds ?PRED ?GENL-PRED) 
        (?PRED ?ARG1 ?ARG2)
    ) 
    (?GENL-PRED ?ARG1 ?ARG2 )
)

;;; #$genls

362
(#$isa #$genls #$DefaultMonotonicPredicate )
363
(#$isa #$genls #$ReflexiveBinaryPredicate )
364
(#$isa #$genls #$TransitiveBinaryPredicate )
365
(#$arity #$genls 2 )
366
(#$arg1Isa #$genls #$Collection )
367
(#$arg2Isa #$genls #$Collection )
368
(#$implies 
    (#$and 
        (#$isa ?OBJ ?SUBSET ) 
        (#$genls ?SUBSET ?SUPERSET )
    ) 
    (#$isa ?OBJ ?SUPERSET )
)
369
(#$implies 
    (#$resultgenl ?FUNC ?COLL ) 
    (#$genls 
        (?FUNC ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 )
        ?COLL
    )
)
370
(#$implies 
    (#$resultgenl ?FUNC ?COLL ) 
    (#$genls 
        ( ?FUNC ?ARG1 ?ARG2 ?ARG3 ?ARG4 ) 
        ?COLL
    )
)
371
(#$implies 
    (#$resultgenl ?FUNC ?COLL) 
    (#$genls 
        (?FUNC ?ARG1 ?ARG2 ?ARG3) 
        ?COLL
    )
)
372
(#$implies 
    (#$resultgenl ?FUNC ?COLL) 
    (#$genls 
        (?FUNC ?ARG1 ?ARG2) 
        ?COLL
    )
)
373
(#$implies 
   (#$resultgenl ?FUNC ?COLL) 
   (#$genls 
      (?FUNC ?ARG1) ?COLL)
)

;;; #$hasAttributes

374
(#$isa #$hasAttributes #$BinaryPredicate )
375
(#$arity #$hasAttributes 2)
376
(#$arg1Isa #$hasAttributes #$TemporalObject )
377
(#$arg2Isa #$hasAttributes #$AttributeValue )
378
(#$not  (#$and 
    (#$hasAttributes ?Z ?X ) 
    (#$hasAttributes ?Z ?Y ) 
    (#$negationAttribute ?X ?Y )
              ) )

;;; #$holdsIn

379
(#$isa #$holdsIn #$BinaryPredicate)
380
(#$arity #$holdsIn 2)
381
(#$arg1Isa #$holdsIn #$TemporalObject )
382
(#$arg2Isa #$holdsIn #$CycFormula )

;;; #$implies

383
(#$isa #$implies #$Relationship )
384 
(#$arity #$implies 2)
385 
(#$arg2Isa #$implies #$CycFormula )
386
(#$arg1Isa #$implies #$CycFormula )
387
(#$resultIsa #$implies #$CycFormula )

;;; #$interArgIsa1-2

388
(#$isa #$interArgIsa1-2 #$TernaryPredicate)
389
(#$arity #$interArgIsa1-2 3)
390
(#$arg1Isa #$interArgIsa1-2 #$Predicate)
391
(#$arg2Isa #$interArgIsa1-2 #$Collection)
392
(#$arg3Isa #$interArgIsa1-2 #$Collection)
393
(#$implies 
    (#$and 
        (#$requiredArg1Pred ?COL-1 ?PRED ) 
        (#$interArgIsa1-2 ?PRED ?COL-1 ?COL-2 )
    ) 
    (#$relationAllExists ?PRED ?COL-1 ?COL-2 )
)
394
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL) 
        (?PRED ?INDEP-INS ?DEP-INS) 
        (#$interArgIsa1-2 ?PRED ?INDEP-COL ?DEP-COL)
    ) 
    (#$isa ?DEP-INS ?DEP-COL)
)

;;; #$interArgIsa1-3

395
(#$isa #$interArgIsa1-3 #$TernaryPredicate)
396
(#$arity #$interArgIsa1-3 3)
397
(#$arg1Isa #$interArgIsa1-3 #$Predicate )
398
(#$arg2Isa #$interArgIsa1-3 #$Collection )
399
(#$arg3Isa #$interArgIsa1-3 #$Collection )
400
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa1-3 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?INDEP-INS ?ANY-ARG-2 ?DEP-INS)
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)


;;; #$interArgIsa1-4

401
(#$isa #$interArgIsa1-4 #$TernaryPredicate)
402
(#$arity #$interArgIsa1-4 3 )
403
(#$arg1Isa #$interArgIsa1-4 #$Predicate )
404
(#$arg2Isa #$interArgIsa1-4 #$Collection )
405
(#$arg3Isa #$interArgIsa1-4 #$Collection)

406
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL) 
        (#$interArgIsa1-4 ?PRED ?INDEP-COL ?DEP-COL) 
        (?PRED ?INDEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?DEP-INS)
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa1-5

407
(#$isa #$interArgIsa1-5 #$TernaryPredicate )
408
 (#$arity #$interArgIsa1-5 3 )
409
 (#$arg1Isa #$interArgIsa1-5 #$Predicate )
410
 (#$arg2Isa #$interArgIsa1-5 #$Collection )
411
 (#$arg3Isa #$interArgIsa1-5 #$Collection )
412
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa1-5 ?PRED ?INDEP-COL ?DEP-COL ) 
        ( ?PRED ?INDEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?ANY-ARG-4 ?DEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL)
)

;;; #$interArgIsa2-1

413
(#$isa #$interArgIsa2-1 #$TernaryPredicate )
414
(#$arity #$interArgIsa2-1 3 )
415
(#$arg1Isa #$interArgIsa2-1 #$Predicate )
416
 (#$arg2Isa [[#$interArgIsa2-1 #$Collection)

417
(#$arg3Isa [[#$interArgIsa2-1 #$Collection)

418
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (?PRED ?DEP-INS ?INDEP-INS ) 
        (#$interArgIsa2-1 ?PRED ?INDEP-COL ?DEP-COL )
    ) 
    (#$isa ?DEP-INS ?DEP-COL)
)

;;; #$interArgIsa2-3

419
 (#$isa #$interArgIsa2-3 #$TernaryPredicate )
420
(#$arity #$interArgIsa2-3 3 )
 421
(#$arg1Isa #$interArgIsa2-3 #$Predicate )
 422
(#$arg2Isa #$interArgIsa2-3 #$Collection )
 423
(#$arg3Isa #$interArgIsa2-3 #$Collection )

 424
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa2-3 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?INDEP-INS ?DEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa2-4

 425
(#$isa #$interArgIsa2-4 #$TernaryPredicate )
 426
(#$arity #$interArgIsa2-4 3 )
 427
(#$arg1Isa #$interArgIsa2-4 #$Predicate )
 428
(#$arg2Isa #$interArgIsa2-4 #$Collection )
 429
(#$arg3Isa #$interArgIsa2-4 #$Collection )

430
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa2-4 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?INDEP-INS ?ANY-ARG-3 ?DEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa2-5

 431
(#$isa #$interArgIsa2-5 #$TernaryPredicate )
 432
(#$arity #$interArgIsa2-5 3 )
 433
(#$arg1Isa #$interArgIsa2-5 #$Predicate )
 434
(#$arg2Isa #$interArgIsa2-5 #$Collection )
 435
(#$arg3Isa #$interArgIsa2-5 #$Collection )

 436
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa2-5 ?PRED ?INDEP-COL ?DEP-COL) 
        (?PRED ?ANY-ARG-1 ?INDEP-INS ?ANY-ARG-3 ?ANY-ARG-4 ?DEP-INS ) 
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa3-1

 437
(#$isa #$interArgIsa3-1 #$TernaryPredicate )
 438
(#$arity #$interArgIsa3-1 3 )
 439
(#$arg1Isa #$interArgIsa3-1 #$Predicate )
 440
(#$arg2Isa #$interArgIsa3-1 #$Collection )
 441
(#$arg3Isa #$interArgIsa3-1 #$Collection )

 442
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa3-1 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?DEP-INS ?ANY-ARG-2 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa3-2

 443
 (#$isa #$interArgIsa3-2 #$TernaryPredicate )
 444
(#$arity #$interArgIsa3-2 3 )
 445
(#$arg1Isa #$interArgIsa3-2 #$Predicate )
 446
(#$arg2Isa #$interArgIsa3-2 #$Collection)
 447
(#$arg3Isa #$interArgIsa3-2 #$Collection )
 448
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa3-2 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?DEP-INS ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL)
)

;;; #$interArgIsa3-4

 449
(#$isa #$interArgIsa3-4 #$TernaryPredicate )
 450
(#$arity #$interArgIsa3-4 3 )
 451
(#$arg1Isa #$interArgIsa3-4 #$Predicate )
 452
(#$arg2Isa #$interArgIsa3-4 #$Collection)
 453
(#$arg3Isa #$interArgIsa3-4 #$Collection )
 454
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa3-4 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?INDEP-INS ?DEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa3-5

 455
(#$isa #$interArgIsa3-5 #$TernaryPredicate )
 456
(#$arity #$interArgIsa3-5 3 )
 457
(#$arg1Isa #$interArgIsa3-5 #$Predicate )
 458
(#$arg2Isa #$interArgIsa3-5 #$Collection )
 459
(#$arg3Isa #$interArgIsa3-5 #$Collection)

 460
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa3-5 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?INDEP-INS ?ANY-ARG-4 ?DEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa4-1

461
(#$isa #$interArgIsa4-1 #$TernaryPredicate )
462
(#$arity #$interArgIsa4-1 3 )
463
(#$arg1Isa #$interArgIsa4-1 #$Predicate )
464
(#$arg2Isa #$interArgIsa4-1 #$Collection )
465
(#$arg3Isa #$interArgIsa4-1 #$Collection )

466
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa4-1 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?DEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa4-2

467
(#$isa #$interArgIsa4-2 #$TernaryPredicate )
468
(#$arity #$interArgIsa4-2 3 )
469
(#$arg1Isa #$interArgIsa4-2 #$Predicate )
470
(#$arg2Isa #$interArgIsa4-2 #$Collection )
471
(#$arg3Isa #$interArgIsa4-2 #$Collection )

472
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa4-2 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?DEP-INS ?ANY-ARG-3 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa4-3

473
(#$isa #$interArgIsa4-3 #$TernaryPredicate )
474
(#$arity #$interArgIsa4-3 3 )
475
(#$arg1Isa #$interArgIsa4-3 #$Predicate )
476
(#$arg2Isa #$interArgIsa4-3 #$Collection )
477
(#$arg3Isa #$interArgIsa4-3 #$Collection )

478
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa4-3 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?DEP-INS ?INDEP-INS ) 
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa4-5

479
(#$isa #$interArgIsa4-5 #$TernaryPredicate )
480
(#$arity #$interArgIsa4-5 3 )
481
(#$arg1Isa #$interArgIsa4-5 #$Predicate )
482
(#$arg2Isa #$interArgIsa4-5 #$Collection )
483
(#$arg3Isa #$interArgIsa4-5 #$Collection )

484
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa4-5 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?ANY-ARG-3 ?INDEP-INS ?DEP-INS  )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa5-1

485
(#$isa #$interArgIsa5-1 #$TernaryPredicate )
486
(#$arity #$interArgIsa5-1 3 )
487
(#$arg1Isa #$interArgIsa5-1 #$QuintaryPredicate )
488
(#$arg2Isa #$interArgIsa5-1 #$Collection )
489
(#$arg3Isa #$interArgIsa5-1 #$Collection )

490
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL) 
        (#$interArgIsa5-1 ?PRED ?INDEP-COL ?DEP-COL) 
        (?PRED ?DEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?ANY-ARG-4 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa5-2

491
(#$isa #$interArgIsa5-2 #$TernaryPredicate )
492
(#$arity #$interArgIsa5-2 3 )
493
(#$arg1Isa #$interArgIsa5-2 #$QuintaryPredicate )
494
(#$arg2Isa #$interArgIsa5-2 #$Collection)
495
(#$arg3Isa #$interArgIsa5-2 #$Collection)
496
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa5-2 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?DEP-INS ?ANY-ARG-3 ?ANY-ARG-4 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa5-3

497
(#$isa #$interArgIsa5-3 #$TernaryPredicate )
498
(#$arity #$interArgIsa5-3 3 )
499
(#$arg1Isa #$interArgIsa5-3 #$QuintaryPredicate )
500
(#$arg2Isa #$interArgIsa5-3 #$Collection )
501
(#$arg3Isa #$interArgIsa5-3 #$Collection )

502
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa5-3 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?DEP-INS ?ANY-ARG-4 ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$interArgIsa5-4

503
(#$isa #$interArgIsa5-4 #$TernaryPredicate )
504
(#$arity #$interArgIsa5-4 3)
505
(#$arg1Isa #$interArgIsa5-4 #$QuintaryPredicate )
506
(#$arg2Isa #$interArgIsa5-4 #$Collection )
507
(#$arg3Isa #$interArgIsa5-4 #$Collection)

508
(#$implies 
    (#$and 
        (#$isa ?INDEP-INS ?INDEP-COL ) 
        (#$interArgIsa5-4 ?PRED ?INDEP-COL ?DEP-COL ) 
        (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?ANY-ARG-3 ?DEP-INS ?INDEP-INS )
    ) 
    (#$isa ?DEP-INS ?DEP-COL )
)

;;; #$relationExistsAll

509
(#$isa #$relationExistsAll #$TernaryPredicate )
510
(#$arity #$relationExistsAll 3 )
511
(#$arg1Isa #$relationExistsAll #$BinaryPredicate )
512
(#$arg2Isa #$relationExistsAll #$Collection )
513
(#$arg3Isa #$relationExistsAll #$Collection )

;;; #$relationExistsCountAll

514
(#$isa #$relationExistsCountAll #$QuaternaryPredicate )
515
(#$arity #$relationExistsCountAll 4 )
516
(#$arg1Isa #$relationExistsCountAll #$BinaryPredicate )
517
(#$arg2Isa #$relationExistsCountAll #$Collection)
518
(#$arg3Isa #$relationExistsCountAll #$Collection)
519
(#$arg4Isa #$relationExistsCountAll #$NonNegativeInteger )

;;; #$isa

520
(#$isa #$isa #$DefaultMonotonicPredicate )
521
(#$isa #$isa #$BinaryPredicate )
522
(#$arity #$isa 2 )
523
(#$arg1Isa #$isa #$ReifiableTerm )
524
(#$arg2Isa #$isa #$Collection )
525
(#$implies 
    ( #$resultIsa ?F ?COL ) 
    ( #$isa 
        (?F ?ARG1 ?ARG2 ?ARG3 ) 
        ?COL
    )
)

526
(#$implies 
    (#$resultIsa ?F ?COL ) 
    (#$isa 
        (?F ?ARG1 ?ARG2 ) 
           ?COL
    )
)

527
(#$implies 
    (#$resultIsa ?F ?COL) 
    (#$isa 
        (?F ?ARG1 ) 
        ?COL 
    )
)

;;; #$ist

528
(#$isa #$ist #$BinaryPredicate )
529
(#$arity #$ist 2 )
530
(#$arg1Isa #$ist #$Microtheory )
531
(#$arg2Isa #$ist #$CycFormula )

;;; #$lispDefun

532
(#$isa #$lispDefun #$BinaryPredicate )
533
(#$arity #$lispDefun 2 )
534
(#$arg1Isa #$lispDefun #$EvaluatableFunction )
535
(#$arg2Isa #$lispDefun #$CycSystemSymbol )

;;; #$minimizeExtent

536
(#$isa #$minimizeExtent #$UnaryPredicate )
537
(#$arity #$minimizeExtent 1 )
538
(#$arg1Isa #$minimizeExtent #$Predicate )

;;; #$mtInferenceFunction

539
(#$isa #$mtInferenceFunction #$BinaryPredicate )
540
(#$arity #$mtInferenceFunction 2 )
541
(#$arg1Isa #$mtInferenceFunction #$Microtheory )
542
(#$arg2Isa #$mtInferenceFunction #$CycSystemSymbol )

;;; #$myCreationTime

543
(#$isa #$myCreationTime #$BinaryPredicate )
544
(#$isa #$myCreationTime #$BookkeepingPredicate )
545
(#$arity #$myCreationTime 2 )
546
(#$arg1Isa #$myCreationTime #$Thing )
547
(#$arg2Isa #$myCreationTime #$PositiveInteger )

;;; #$myCreator

548
(#$isa #$myCreator #$BinaryPredicate )
549
(#$isa #$myCreator #$BookkeepingPredicate )
550
(#$arity #$myCreator 2)
551
(#$arg1Isa #$myCreator #$Thing )
552
(#$arg2Isa #$myCreator #$Cyclist )

;;; #$negationAttribute

553
(#$isa #$negationAttribute #$SymmetricBinaryPredicate )
554
(#$isa #$negationAttribute #$IrreflexiveBinaryPredicate )
555
(#$genlInverse #$negationAttribute #$negationAttribute )
556
(#$arity #$negationAttribute 2)
557
(#$arg1Isa #$negationAttribute #$AttributeValue )
558
(#$arg2Isa #$negationAttribute #$AttributeValue )

;;; #$negationInverse

559
(#$isa #$negationInverse #$SymmetricBinaryPredicate )
560
(#$isa #$negationInverse #$IrreflexiveBinaryPredicate )
561
(#$genlInverse #$negationInverse #$negationInverse )
562
(#$arity #$negationInverse 2 )
563
(#$arg1Isa #$negationInverse #$BinaryPredicate )
564
(#$arg2Isa #$negationInverse #$BinaryPredicate )

565
(#$not   (#$and 
    (#$negationInverse ?GEN-PRED ?PRED) 
    (?PRED ?ARG1 ?ARG2) 
    (?GEN-PRED ?ARG2 ?ARG1)
                )  )

;;; #$negationPreds

566
(#$isa #$negationPreds #$SymmetricBinaryPredicate )
567
(#$genlInverse #$negationPreds #$negationPreds)
568
(#$arity #$negationPreds 2 )
569
(#$arg1Isa #$negationPreds #$Predicate )
570
(#$arg2Isa #$negationPreds #$Predicate )

571
(#$not    (#$and 
   (?PRED ?ARG1) 
   (?NEG-PRED ?ARG1) 
   (#$negationPreds ?NEG-PRED ?PRED )
         )    )

572
(#$not     (#$and 
   (#$negationPreds ?NEG-PRED ?PRED) 
   (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5) 
   (?NEG-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5)
                   )    )

573
(#$not      (#$and 
   (#$negationPreds ?NEG-PRED ?PRED) 
   (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4) 
   (?NEG-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 )
                    )     )

574
(#$not     (#$and 
   (#$negationPreds ?NEG-PRED ?PRED) 
   (?PRED ?ARG1 ?ARG2 ?ARG3) 
   (?NEG-PRED ?ARG1 ?ARG2 ?ARG3)
                )    )

575
(#$not   (#$and 
   (#$negationPreds ?NEG-PRED ?PRED) 
   (?PRED ?ARG1 ?ARG2) 
   (?NEG-PRED ?ARG1 ?ARG2)
                     )        )

;;; #$not

576
(#$isa #$not #$Relationship )
577
(#$arity #$not 1 )
578
(#$arg1Isa #$not #$CycFormula )
579
(#$resultIsa #$not #$CycFormula )

;;; #$oldConstantName

580
(#$isa #$oldConstantName #$BinaryPredicate )
581
(#$arity #$oldConstantName 2 )
582
(#$arg1Isa #$oldConstantName #$Thing )
583
(#$arg2Isa #$oldConstantName #$CycSystemString )

;;; #$or

584
(#$isa #$or #$CommutativeRelation )
585
(#$isa #$or #$VariableArityRelation )
586
(#$argsIsa #$or #$CycFormula )
587
(#$resultIsa #$or #$CycFormula )

;;; #$relationAllExists

588
(#$isa #$relationAllExists #$TernaryPredicate )
589
(#$arity #$relationAllExists 3 )
590
(#$arg1Isa #$relationAllExists #$BinaryPredicate )
591
(#$arg2Isa #$relationAllExists #$Collection )
592
(#$arg3Isa #$relationAllExists #$Collection )

;;; #$relationAllExistsCount

593
(#$isa #$relationAllExistsCount #$QuaternaryPredicate )
594
(#$arity #$relationAllExistsCount 4 )
595
(#$arg1Isa #$relationAllExistsCount #$BinaryPredicate )
596
(#$arg2Isa #$relationAllExistsCount #$Collection )
597
(#$arg3Isa #$relationAllExistsCount #$Collection )
598
(#$arg4Isa #$relationAllExistsCount #$NonNegativeInteger )

;;; #$requiredArg1Pred

600
(#$isa #$requiredArg1Pred #$BinaryPredicate )
601
(#$arity #$requiredArg1Pred 2 )
602
(#$arg1Isa #$requiredArg1Pred #$Collection )
603
(#$arg2Isa #$requiredArg1Pred #$Predicate )

;;; #$requiredArg2Pred

604
(#$isa #$requiredArg2Pred #$BinaryPredicate )
605
(#$arity #$requiredArg2Pred 2 )
606
(#$arg1Isa #$requiredArg2Pred #$Collection )
607
(#$arg2Isa #$requiredArg2Pred #$Predicate )

;;; #$resultgenl

608
(#$isa #$resultgenl #$BinaryPredicate )
609
(#$arity #$resultGenl 2  )
610
(#$arg1Isa #$resultGenl #$CollectionDenotingFunction )
611
(#$arg2Isa #$resultGenl #$Collection )

;;; #$resultIsa

612
(#$isa #$resultIsa #$BinaryPredicate )
613
(#$arity #$resultIsa 2 )
614
(#$arg1Isa #$resultIsa #$Relationship )
615
(#$arg2Isa #$resultIsa #$Collection )

;;; #$satisfiesDescription

616
(#$isa #$satisfiesDescription #$TernaryPredicate )
617
(#$arity #$satisfiesDescription 3 )
618
(#$arg1Isa #$satisfiesDescription #$CycSystemList )
619
(#$arg2Isa #$satisfiesDescription #$CycSystemList )
620
(#$arg3Isa #$satisfiesDescription #$Microtheory )


;;; #$siblingDisjointExceptions

621
(#$isa #$siblingDisjointExceptions #$SymmetricBinaryPredicate )
622
(#$isa #$siblingDisjointExceptions #$IrreflexiveBinaryPredicate )
623
(#$genlInverse]] #$siblingDisjointExceptions #$siblingDisjointExceptions )
624
(#$arity #$siblingDisjointExceptions 2 )
625
(#$arg1Isa #$siblingDisjointExceptions #$Collection )
626
(#$arg2Isa #$siblingDisjointExceptions #$Collection )

627
(#$implies 
    (#$siblingDisjointExceptions ?C1 ?C2 ) 
    (#$siblingDisjointExceptions ?C1 ?C2 ) 
)

;;; #$termOfUnit

628
(#$isa #$termOfUnit #$DefaultMonotonicPredicate )
629
(#$isa #$termOfUnit #$InferenceRelatedBookkeepingPredicate )
630
(#$isa #$termOfUnit #$BinaryPredicate )
631
(#$arity #$termOfUnit 2 )
632
(#$arg1Isa #$termOfUnit #$ReifiableTerm )
633
(#$arg2Isa #$termOfUnit #$CycSystemList )

;;; #$thereExistAtLeast

634
(#$isa #$thereExistAtLeast #$Relationship )
635
(#$arity #$thereExistAtLeast 3 )
636
(#$resultIsa #$thereExistAtLeast #$CycFormula )
637
(#$arg3Isa #$thereExistAtLeast #$CycFormula )
638
(#$arg2Isa #$thereExistAtLeast #$CycELVariable )
639
(#$arg1Isa #$thereExistAtLeast #$PositiveInteger )

;;; #$thereExistAtMost

640
(#$isa #$thereExistAtMost #$Relationship )
641
(#$arity #$thereExistAtMost 3 )
642
(#$resultIsa #$thereExistAtMost #$CycFormula )
643
(#$arg3Isa #$thereExistAtMost #$CycFormula )
644
(#$arg2Isa #$thereExistAtMost #$CycELVariable )
645
(#$arg1Isa #$thereExistAtMost #$PositiveInteger )

;;; #$thereExistExactly

646
(#$isa #$thereExistExactly #$Relationship )
647
(#$arity #$thereExistExactly 3 )
648
(#$resultIsa #$thereExistExactly #$CycFormula )
649
(#$arg3Isa #$thereExistExactly #$CycFormula )
650
(#$arg2Isa #$thereExistExactly #$CycELVariable )
651
(#$arg1Isa #$thereExistExactly #$PositiveInteger)

;;; #$thereExists

652
(#$isa #$thereExists #$Relationship )
653
(#$arity #$thereExists 2 )
654
(#$arg2Isa #$thereExists #$CycFormula )
655
(#$arg1Isa #$thereExists #$CycELVariable )