Difference between revisions of "User:DavidWhitten/mso"

From Public Domain Knowledge Bank
Jump to: navigation, search
(Minimum Standard Ontology)
(Basic logic symbols)
 
Line 23: Line 23:
 
| style="text-align:left;font-family:monospace" |&amp;#8658;<br /><br />&amp;#8594;<br /><br />&amp;#8835;
 
| style="text-align:left;font-family:monospace" |&amp;#8658;<br /><br />&amp;#8594;<br /><br />&amp;#8835;
 
| style="text-align:left;font-family:monospace" |&amp;rArr;<br /><br />&amp;rarr;<br /><br />&amp;sup;
 
| style="text-align:left;font-family:monospace" |&amp;rArr;<br /><br />&amp;rarr;<br /><br />&amp;sup;
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div>
+
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /> <math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div>
 +
|
 
|-
 
|-
 
| bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">⇔<br />≡<br />↔</div>
 
| bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">⇔<br />≡<br />↔</div>

Latest revision as of 15:46, 1 February 2021

Minimum Standard Ontology

Basic logic symbols

Symbol</div> Name Read as Category Explanation Examples Unicode
value
(hexadecimal)
HTML
value
(decimal)
HTML
entity
(named)
LaTeX
symbol


material implication implies; if ... then propositional logic, Heyting algebra <math>A \Rightarrow B</math> is false when <math>A</math> is true and <math>B</math> is false but true otherwise.<ref>Template:Cite web</ref>Template:Circular reference

<math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

<math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean superset).
<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since <math>x</math> could be −2). U+21D2

U+2192

U+2283
&#8658;

&#8594;

&#8835;
&rArr;

&rarr;

&sup;
<math>\Rightarrow</math>\Rightarrow
<math>\to</math>\to or \rightarrow
<math>\supset</math>\supset
<math>\implies</math>\implies


material equivalence if and only if; iff; means the same as propositional logic <math>A \Leftrightarrow B</math> is true only if both <math>A</math> and <math>B</math> are false, or both <math>A</math> and <math>B</math> are true. <math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math> U+21D4

U+2261

U+2194
&#8660;

&#8801;

&#8596;
&hArr;

&equiv;

&harr;
<math>\Leftrightarrow</math>\Leftrightarrow
<math>\equiv</math>\equiv
<math>\leftrightarrow</math>\leftrightarrow
<math>\iff</math>\iff
¬
˜
!
negation not propositional logic The statement <math>\lnot A</math> is true if and only if <math>A</math> is false.

A slash placed through another operator is the same as <math>\neg</math> placed in front.
<math>\neg (\neg A) \Leftrightarrow A</math>
<math>x \neq y \Leftrightarrow \neg (x = y)</math>
U+00AC

U+02DC

U+0021
&#172;

&#732;

&#33;
&not;

&tilde;

&excl;
<math>\neg</math>\lnot or \neg


<math>\sim</math>\sim


𝔻
Domain of discourse Domain of predicate Predicate (mathematical logic) <math>\mathbb D\mathbb :\mathbb R</math> U+1D53B &#120123; &Dopf; \mathbb{D}

·
&
logical conjunction and propositional logic, Boolean algebra The statement AB is true if A and B are both true; otherwise, it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number. U+2227

U+00B7

U+0026
&#8743;

&#183;

&#38;
&and;

&middot;

&amp;
<math>\wedge</math>\wedge or \land
<math>\cdot</math>\cdot <math>\&</math>\&<ref>Although this character is available in LaTeX, the MediaWiki TeX system does not support it.</ref>

+
logical (inclusive) disjunction or propositional logic, Boolean algebra The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number. U+2228

U+002B

U+2225
&#8744;

&#43;

&#8741;
&or;


&plus;


&parallel;

<math>\lor</math>\lor or \vee



<math>\parallel</math>\parallel




exclusive disjunction xor; either ... or propositional logic, Boolean algebra The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, and AA always false, if vacuous truth is excluded. U+2295

U+22BB


U+2262

&#8853;

&#8891;


&#8802;

&oplus;


&veebar;

&nequiv;

<math>\oplus</math>\oplus


<math>\veebar</math>\veebar


<math>\not\equiv</math>\not\equiv



T
1
Tautology top, truth propositional logic, Boolean algebra The statement is unconditionally true. A ⇒ ⊤ is always true. U+22A4



&#8868;


&top;


<math>\top</math>\top


F
0
Contradiction bottom, falsum, falsity propositional logic, Boolean algebra The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to perpendicular lines.) ⊥ ⇒ A is always true. U+22A5



&#8869;



&perp;



<math>\bot</math>\bot

()
universal quantification for all; for any; for each first-order logic ∀ xP(x) or (xP(x) means P(x) is true for all x. ∀ n ∈ ℕ: n2 ≥ n. U+2200

&#8704;

&forall;

<math>\forall</math>\forall
existential quantification there exists first-order logic ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ℕ: n is even. U+2203 &#8707; &exist; <math>\exists</math>\exists
∃!
uniqueness quantification there exists exactly one first-order logic ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ℕ: n + 5 = 2n. U+2203 U+0021 &#8707; &#33; &exist;! <math>\exists !</math>\exists !


:⇔
definition is defined as everywhere x ≔ y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
<math>\cosh x := \frac {e^x + e^{-x}} {2}</math>

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
U+2254 (U+003A U+003D)

U+2261

U+003A U+229C
&#8788; (&#58; &#61;)


&#8801;

&#8860;

&coloneq;


&equiv;

&hArr;

<math>:=</math>:=


<math>\equiv</math>\equiv

<math>:\Leftrightarrow</math>:\Leftrightarrow

( )
precedence grouping parentheses; brackets everywhere Perform the operations inside the parentheses first. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. U+0028 U+0029 &#40; &#41; &lpar;

&rpar;

<math>(~)</math> ( )
turnstile proves propositional logic, first-order logic xy means x proves (syntactically entails) y (AB) ⊢ (¬B → ¬A) U+22A2 &#8866; &vdash; <math>\vdash</math>\vdash
double turnstile models propositional logic, first-order logic xy means x models (semantically entails) y (AB) ⊨ (¬B → ¬A) U+22A8 &#8872; &vDash; <math>\vDash</math>\vDash, \models


connective
16 LOGICAL OPERATORS
Class/Category/Set

forAll, thereExists, lambda, apply, mu,

aka, ako, isa,