Difference between revisions of "User:DavidWhitten/mso"
From Public Domain Knowledge Bank
DavidWhitten (talk | contribs) (Created page with "= Minimum Standard Ontology = {| |+ | connective |+ | 16 LOGICAL OPERATORS<br> |+ | |}") |
DavidWhitten (talk | contribs) (→Minimum Standard Ontology) |
||
Line 1: | Line 1: | ||
= Minimum Standard Ontology = | = Minimum Standard Ontology = | ||
+ | ==Basic logic symbols== | ||
+ | {| class="wikitable" | ||
+ | |- bgcolor=#a0e0a0 | ||
+ | ! scope="col" |Symbol</div> | ||
+ | !Name | ||
+ | !Read as | ||
+ | !Category | ||
+ | ! scope="col" |Explanation | ||
+ | ! scope="col" |Examples | ||
+ | ! scope="col" |Unicode<br />value<br />(hexadecimal) | ||
+ | ! scope="col" |HTML<br />value<br />(decimal) | ||
+ | ! scope="col" |HTML<br />entity<br />(named) | ||
+ | ! scope="col" |[[LaTeX]]<br />symbol | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">⇒<br />→<br />⊃</div> | ||
+ | ||[[material conditional|material implication]] | ||
+ | |implies; if ... then | ||
+ | |[[propositional logic]], [[Heyting algebra]] | ||
+ | |<math>A \Rightarrow B</math> is false when <math>A</math> is true and <math>B</math> is false but true otherwise.<ref>{{Cite web | url=https://en.wikipedia.org/wiki/Material_conditional |title = Material conditional}}</ref>{{Circular reference|date=May 2020}}<br /><br /><math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a [[function (mathematics)|function]]; see [[table of mathematical symbols]]).<br /><br /><math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean [[superset]]). | ||
+ | |<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since <math>x</math> could be −2). | ||
+ | | style="text-align:left;font-family:monospace" |U+21D2<br /><br />U+2192<br /><br />U+2283 | ||
+ | | style="text-align:left;font-family:monospace" |&#8658;<br /><br />&#8594;<br /><br />&#8835; | ||
+ | | style="text-align:left;font-family:monospace" |&rArr;<br /><br />&rarr;<br /><br />&sup; | ||
+ | | style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div> | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">⇔<br />≡<br />↔</div> | ||
+ | ||[[material equivalence]] | ||
+ | |if and only if; iff; means the same as | ||
+ | |[[propositional logic]] | ||
+ | |<math>A \Leftrightarrow B</math> is true only if both <math>A</math> and <math>B</math> are false, or both <math>A</math> and <math>B</math> are true. | ||
+ | |<math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math> | ||
+ | | style="text-align:left;font-family:monospace" |U+21D4<br /><br />U+2261<br /><br />U+2194 | ||
+ | | style="text-align:left;font-family:monospace" |&#8660;<br /><br />&#8801;<br /><br />&#8596; | ||
+ | | style="text-align:left;font-family:monospace" |&hArr;<br /><br />&equiv;<br /><br />&harr; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\Leftrightarrow</math>\Leftrightarrow<br /><math>\equiv</math>\equiv<br /><math>\leftrightarrow</math>\leftrightarrow<br /><math>\iff</math>\iff | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">¬<br />˜<br />!</div> | ||
+ | ||[[negation]] | ||
+ | |not | ||
+ | |[[propositional logic]] | ||
+ | |The statement <math>\lnot A</math> is true if and only if <math>A</math> is false.<br /><br />A slash placed through another operator is the same as <math>\neg</math> placed in front. | ||
+ | |<math>\neg (\neg A) \Leftrightarrow A</math><br /> <math>x \neq y \Leftrightarrow \neg (x = y)</math> | ||
+ | | style="text-align:left;font-family:monospace" |U+00AC<br /><br />U+02DC<br /><br />U+0021 | ||
+ | | style="text-align:left;font-family:monospace" |&#172;<br /><br />&#732;<br /><br />&#33; | ||
+ | | style="text-align:left;font-family:monospace" |&not;<br /><br />&tilde;<br /><br />&excl; | ||
+ | | style="text-align:left;font-family:monospace" |<div><math>\neg</math>\lnot or \neg | ||
+ | |||
+ | <br /><math>\sim</math>\sim | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">𝔻 | ||
+ | ||[[Domain of discourse]] | ||
+ | |Domain of predicate | ||
+ | |[[Predicate (mathematical logic)]] | ||
+ | | | ||
+ | | <math>\mathbb D\mathbb :\mathbb R</math> | ||
+ | | style="text-align:left;font-family:monospace" |U+1D53B | ||
+ | | style="text-align:left;font-family:monospace" |&#120123; | ||
+ | | style="text-align:left;font-family:monospace" |&Dopf; | ||
+ | | style="text-align:left;font-family:monospace" |\mathbb{D} | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">∧ <br/>·<br/>&</div> | ||
+ | ||[[logical conjunction]] | ||
+ | |and | ||
+ | |[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]] | ||
+ | |The statement ''A'' ∧ ''B'' is true if ''A'' and ''B'' are both true; otherwise, it is false. | ||
+ | |''n'' < 4 ∧ ''n'' >2 ⇔ ''n'' = 3 when ''n'' is a [[natural number]]. | ||
+ | | style="text-align:left;font-family:monospace" |U+2227<br /><br />U+00B7<br /><br />U+0026 | ||
+ | | style="text-align:left;font-family:monospace" |&#8743;<br /><br />&#183;<br /><br />&#38;<br /> | ||
+ | | style="text-align:left;font-family:monospace" |&and;<br /><br />&middot;<br /><br />&amp; | ||
+ | | style="text-align:left;font-family:monospace" |<div><math>\wedge</math>\wedge or \land<br /><math>\cdot</math>\cdot | ||
+ | <math>\&</math>\&<ref>Although this character is available in LaTeX, the [[MediaWiki]] TeX system does not support it.</ref></div> | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">∨<br />+<br />∥</div> | ||
+ | ||[[logical disjunction|logical (inclusive) disjunction]] | ||
+ | |or | ||
+ | |[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]] | ||
+ | |The statement ''A'' ∨ ''B'' is true if ''A'' or ''B'' (or both) are true; if both are false, the statement is false. | ||
+ | |''n'' ≥ 4 ∨ ''n'' ≤ 2 ⇔ ''n'' ≠ 3 when ''n'' is a [[natural number]]. | ||
+ | | style="text-align:left;font-family:monospace" |U+2228<br /><br />U+002B<br /><br />U+2225 | ||
+ | | style="text-align:left;font-family:monospace" |&#8744;<br /><br />&#43;<br /><br />&#8741; | ||
+ | | style="text-align:left;font-family:monospace" |&or; | ||
+ | <br />&plus; | ||
+ | |||
+ | |||
+ | &parallel; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\lor</math>\lor or \vee | ||
+ | |||
+ | |||
+ | |||
+ | <br /><math>\parallel</math>\parallel | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<br /><div style="font-size:200%;">⊕<br />⊻<br />≢</div>||[[exclusive or|exclusive disjunction]] | ||
+ | |xor; either ... or | ||
+ | |[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]] | ||
+ | | The statement ''A'' ⊕ ''B'' is true when either A or B, but not both, are true. ''A'' ⊻ ''B'' means the same. | ||
+ | | (¬''A'') ⊕ ''A'' is always true, and ''A'' ⊕ ''A'' always false, if [[vacuous truth]] is excluded. | ||
+ | | style="text-align:left;font-family:monospace" |U+2295<br /><br />U+22BB | ||
+ | |||
+ | |||
+ | [[Mathematical Operators|U+]]2262 | ||
+ | | style="text-align:left;font-family:monospace" |&#8853;<br /><br />&#8891; | ||
+ | |||
+ | |||
+ | &#8802; | ||
+ | | style="text-align:left;font-family:monospace" |&oplus; | ||
+ | <br />&veebar;<br /><br />&nequiv; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\oplus</math>\oplus | ||
+ | |||
+ | |||
+ | <math>\veebar</math>\veebar | ||
+ | |||
+ | |||
+ | <math>\not\equiv</math>\not\equiv | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<br /><div style="font-size:200%;">⊤<br />T<br />1</div>||[[Tautology (logic)|Tautology]] | ||
+ | |top, truth | ||
+ | |[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]] | ||
+ | | The statement ''⊤'' is unconditionally true. | ||
+ | |''A'' ⇒ ⊤ is always true. | ||
+ | | style="text-align:left;font-family:monospace" |U+22A4<br /><br /><br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&#8868;<br /><br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&top; | ||
+ | |||
+ | |||
+ | | style="text-align:left;font-family:monospace" |<math>\top</math>\top | ||
+ | |- | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<br/><div style="font-size:200%;">⊥<br/>F<br/>0</div> ||[[Contradiction]] | ||
+ | |bottom, falsum, falsity | ||
+ | |[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]] | ||
+ | | The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to [[perpendicular]] lines.) | ||
+ | | ⊥ ⇒ ''A'' is always true. | ||
+ | | style="text-align:left;font-family:monospace" |U+22A5<br /><br /><br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&#8869;<br /><br /><br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&perp;<br /><br /><br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |<math>\bot</math>\bot | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">∀<br />()</div> | ||
+ | ||[[universal quantification]] | ||
+ | |for all; for any; for each | ||
+ | |[[first-order logic]] | ||
+ | |∀ ''x'': ''P''(''x'') or (''x'') ''P''(''x'') means ''P''(''x'') is true for all ''x''. | ||
+ | |∀ ''n'' ∈ ℕ: ''n''<sup>2</sup> ≥ ''n''. | ||
+ | | style="text-align:left;font-family:monospace" |U+2200<br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&#8704;<br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |&forall;<br /><br /> | ||
+ | | style="text-align:left;font-family:monospace" |<math>\forall</math>\forall | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">∃</div> | ||
+ | ||[[existential quantification]] | ||
+ | |there exists | ||
+ | |[[first-order logic]] | ||
+ | |∃ ''x'': ''P''(''x'') means there is at least one ''x'' such that ''P''(''x'') is true. | ||
+ | |∃ ''n'' ∈ ℕ: ''n'' is even. | ||
+ | | style="text-align:left;font-family:monospace" |U+2203 | ||
+ | | style="text-align:left;font-family:monospace" |&#8707; | ||
+ | | style="text-align:left;font-family:monospace" |&exist; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\exists</math>\exists | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">∃!</div> | ||
+ | ||[[uniqueness quantification]] | ||
+ | |there exists exactly one | ||
+ | |[[first-order logic]] | ||
+ | |∃! ''x'': ''P''(''x'') means there is exactly one ''x'' such that ''P''(''x'') is true. | ||
+ | |∃! ''n'' ∈ ℕ: ''n'' + 5 = 2''n''. | ||
+ | | style="text-align:left;font-family:monospace" |U+2203 U+0021 | ||
+ | | style="text-align:left;font-family:monospace" |&#8707; &#33; | ||
+ | | style="text-align:left;font-family:monospace" |&exist;! | ||
+ | | style="text-align:left;font-family:monospace" |<math>\exists !</math>\exists ! | ||
+ | |- | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">≔<br/>≡<br/>:⇔</div> | ||
+ | ||[[definition]] | ||
+ | |is defined as | ||
+ | |everywhere | ||
+ | |''x'' ≔ ''y'' or ''x'' ≡ ''y'' means ''x'' is defined to be another name for ''y'' (but note that ≡ can also mean other things, such as [[congruence relation|congruence]]).<br /><br />''P'' :⇔ ''Q'' means ''P'' is defined to be [[Logical equivalence|logically equivalent]] to ''Q''. | ||
+ | |<math>\cosh x := \frac {e^x + e^{-x}} {2}</math><br /><br />''A'' XOR ''B'' :⇔ (''A'' ∨ ''B'') ∧ ¬(''A'' ∧ ''B'') | ||
+ | | style="text-align:left;font-family:monospace" |U+2254 (U+003A U+003D)<br /><br />U+2261<br /><br />U+003A U+229C | ||
+ | | style="text-align:left;font-family:monospace" |&#8788; (&#58; &#61;) | ||
+ | <br />&#8801;<br /><br />&#8860; | ||
+ | | style="text-align:left;font-family:monospace" |&coloneq; | ||
+ | <br />&equiv;<br /><br />&hArr; | ||
+ | | style="text-align:left;font-family:monospace" |<div><math>:=</math>:= | ||
+ | |||
+ | |||
+ | <math>\equiv</math>\equiv<br /> | ||
+ | |||
+ | <math>:\Leftrightarrow</math>:\Leftrightarrow | ||
+ | </div> | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">( )</div> | ||
+ | |[[precedence grouping]] | ||
+ | |parentheses; brackets | ||
+ | |everywhere | ||
+ | | Perform the operations inside the parentheses first. | ||
+ | |(8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. | ||
+ | | style="text-align:left;font-family:monospace" | U+0028 U+0029 | ||
+ | | style="text-align:left;font-family:monospace" |&#40; &#41; | ||
+ | | style="text-align:left;font-family:monospace" |&lpar; | ||
+ | |||
+ | &rpar; | ||
+ | | style="text-align:left;font-family:monospace" |<math>(~)</math> ( ) | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" |<div style="font-size:200%;">⊢</div> | ||
+ | ||[[Turnstile (symbol)|turnstile]] | ||
+ | |[[Logical consequence|proves]] | ||
+ | |[[propositional logic]], [[first-order logic]] | ||
+ | |''x'' ⊢ ''y'' means ''x'' proves (syntactically entails) ''y'' | ||
+ | | (''A'' → ''B'') ⊢ (¬''B'' → ¬''A'') | ||
+ | | style="text-align:left;font-family:monospace" |U+22A2 | ||
+ | | style="text-align:left;font-family:monospace" |&#8866; | ||
+ | | style="text-align:left;font-family:monospace" |&vdash; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\vdash</math>\vdash | ||
+ | |- | ||
+ | | bgcolor="#d0f0d0" align="center" | <div style="font-size:200%;">⊨</div> | ||
+ | ||[[double turnstile]] | ||
+ | |[[Logical consequence|models]] | ||
+ | |[[propositional logic]], [[first-order logic]] | ||
+ | |''x'' ⊨ ''y'' means ''x'' models (semantically entails) ''y'' | ||
+ | | (''A'' → ''B'') ⊨ (¬''B'' → ¬''A'') | ||
+ | | style="text-align:left;font-family:monospace" |U+22A8 | ||
+ | | style="text-align:left;font-family:monospace" |&#8872; | ||
+ | | style="text-align:left;font-family:monospace" |&vDash; | ||
+ | | style="text-align:left;font-family:monospace" |<math>\vDash</math>\vDash, \models | ||
+ | |- | ||
+ | |} | ||
Line 6: | Line 236: | ||
| connective | | connective | ||
|+ | |+ | ||
− | | 16 LOGICAL OPERATORS<br> | + | | 16 LOGICAL OPERATORS<br>Class/Category/Set |
|+ | |+ | ||
| | | | ||
|} | |} | ||
+ | |||
+ | forAll, thereExists, lambda, apply, mu, | ||
+ | |||
+ | aka, ako, isa, |
Revision as of 15:42, 1 February 2021
Minimum Standard Ontology
Basic logic symbols
Symbol</div> | Name | Read as | Category | Explanation | Examples | Unicode value (hexadecimal) |
HTML value (decimal) |
HTML entity (named) |
LaTeX symbol |
---|---|---|---|---|---|---|---|---|---|
⇒
→ ⊃ |
material implication | implies; if ... then | propositional logic, Heyting algebra | <math>A \Rightarrow B</math> is false when <math>A</math> is true and <math>B</math> is false but true otherwise.<ref>Template:Cite web</ref>Template:Circular reference <math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols). <math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean superset). |
<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since <math>x</math> could be −2). | U+21D2 U+2192 U+2283 |
⇒ → ⊃ |
⇒ → ⊃ |
<math>\Rightarrow</math>\Rightarrow
<math>\to</math>\to or \rightarrow <math>\supset</math>\supset <math>\implies</math>\implies |
⇔
≡ ↔ |
material equivalence | if and only if; iff; means the same as | propositional logic | <math>A \Leftrightarrow B</math> is true only if both <math>A</math> and <math>B</math> are false, or both <math>A</math> and <math>B</math> are true. | <math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math> | U+21D4 U+2261 U+2194 |
⇔ ≡ ↔ |
⇔ ≡ ↔ |
<math>\Leftrightarrow</math>\Leftrightarrow <math>\equiv</math>\equiv <math>\leftrightarrow</math>\leftrightarrow <math>\iff</math>\iff |
¬
˜ ! |
negation | not | propositional logic | The statement <math>\lnot A</math> is true if and only if <math>A</math> is false. A slash placed through another operator is the same as <math>\neg</math> placed in front. |
<math>\neg (\neg A) \Leftrightarrow A</math> <math>x \neq y \Leftrightarrow \neg (x = y)</math> |
U+00AC U+02DC U+0021 |
¬ ˜ ! |
¬ ˜ ! |
<math>\neg</math>\lnot or \neg
|
𝔻
|
Domain of discourse | Domain of predicate | Predicate (mathematical logic) | <math>\mathbb D\mathbb :\mathbb R</math> | U+1D53B | 𝔻 | 𝔻 | \mathbb{D} | |
∧
· & |
logical conjunction | and | propositional logic, Boolean algebra | The statement A ∧ B is true if A and B are both true; otherwise, it is false. | n < 4 ∧ n >2 ⇔ n = 3 when n is a natural number. | U+2227 U+00B7 U+0026 |
∧ · & |
∧ · & |
<math>\wedge</math>\wedge or \land
<math>\cdot</math>\cdot <math>\&</math>\&<ref>Although this character is available in LaTeX, the MediaWiki TeX system does not support it.</ref> |
∨
+ ∥ |
logical (inclusive) disjunction | or | propositional logic, Boolean algebra | The statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false. | n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is a natural number. | U+2228 U+002B U+2225 |
∨ + ∥ |
∨
|
<math>\lor</math>\lor or \vee
|
⊕ ⊻ ≢ |
exclusive disjunction | xor; either ... or | propositional logic, Boolean algebra | The statement A ⊕ B is true when either A or B, but not both, are true. A ⊻ B means the same. | (¬A) ⊕ A is always true, and A ⊕ A always false, if vacuous truth is excluded. | U+2295 U+22BB
|
⊕ ⊻
|
⊕
|
<math>\oplus</math>\oplus
|
⊤ T 1 |
Tautology | top, truth | propositional logic, Boolean algebra | The statement ⊤ is unconditionally true. | A ⇒ ⊤ is always true. | U+22A4 |
⊤ |
⊤
|
<math>\top</math>\top |
⊥ F 0 |
Contradiction | bottom, falsum, falsity | propositional logic, Boolean algebra | The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to perpendicular lines.) | ⊥ ⇒ A is always true. | U+22A5 |
⊥ |
⊥ |
<math>\bot</math>\bot |
∀
() |
universal quantification | for all; for any; for each | first-order logic | ∀ x: P(x) or (x) P(x) means P(x) is true for all x. | ∀ n ∈ ℕ: n2 ≥ n. | U+2200 |
∀ |
∀ |
<math>\forall</math>\forall |
∃
|
existential quantification | there exists | first-order logic | ∃ x: P(x) means there is at least one x such that P(x) is true. | ∃ n ∈ ℕ: n is even. | U+2203 | ∃ | ∃ | <math>\exists</math>\exists |
∃!
|
uniqueness quantification | there exists exactly one | first-order logic | ∃! x: P(x) means there is exactly one x such that P(x) is true. | ∃! n ∈ ℕ: n + 5 = 2n. | U+2203 U+0021 | ∃ ! | ∃! | <math>\exists !</math>\exists ! |
≔
≡ :⇔ |
definition | is defined as | everywhere | x ≔ y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence). P :⇔ Q means P is defined to be logically equivalent to Q. |
<math>\cosh x := \frac {e^x + e^{-x}} {2}</math> A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B) |
U+2254 (U+003A U+003D) U+2261 U+003A U+229C |
≔ (: =)
|
≔
|
<math>:=</math>:=
<math>:\Leftrightarrow</math>:\Leftrightarrow |
( )
|
precedence grouping | parentheses; brackets | everywhere | Perform the operations inside the parentheses first. | (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. | U+0028 U+0029 | ( ) | (
) |
<math>(~)</math> ( ) |
⊢
|
turnstile | proves | propositional logic, first-order logic | x ⊢ y means x proves (syntactically entails) y | (A → B) ⊢ (¬B → ¬A) | U+22A2 | ⊢ | ⊢ | <math>\vdash</math>\vdash |
⊨
|
double turnstile | models | propositional logic, first-order logic | x ⊨ y means x models (semantically entails) y | (A → B) ⊨ (¬B → ¬A) | U+22A8 | ⊨ | ⊨ | <math>\vDash</math>\vDash, \models |
connective | 16 LOGICAL OPERATORS Class/Category/Set |
forAll, thereExists, lambda, apply, mu,
aka, ako, isa,