Category:MELD/V

From Public Domain Knowledge Bank
Revision as of 16:45, 30 September 2019 by DavidWhitten (talk | contribs) (MELD/V/AntiSymmetricBinaryPredicate| #$AntiSymmetricBinaryPredicate)
Jump to: navigation, search

Terms in the MELD Vocabulary.

We've prefixed each MELD term with the characters #$. This may facilitate reading mechanically; if you don't care or want this, just do a systematic replace of #$ by the empty string. It will be useful in distinguishing MELD constant names from the names of C (or Lisp) functions which are called to implement some of the low-level bookkeeping, and may be useful in distinguishing MELD constant names from numbers (e.g., distinguishing the MELD constant named 42 from the number 42.)

Let us reiterate that MELD is a declarative language with no procedural information of any kind in any MELD formula, including these formulas.

Finally, you may notice that about 10 of the 160 MELD constant terms below contain the word "Cyc"; this reflects the origins of those terms. We could just as well have called those ten . . .Cyc. . . terms . . .MELD. . . instead; the absolute names are not so important as agreeing on a fixed vocabulary of names for constants.

This is the MELD semantic standard; please do not rename any of these 160 terms, or remove/violate any of these 650 formulas:


MELD/V/AntiSymmetricBinaryPredicate| #$AntiSymmetricBinaryPredicate

name in URL: {{MELD/A|1|001|(_%$isa_%$AntiSymmetricBinaryPredicate_%$Collection_)| ( #$ {{#if: %$isa |%$isa|}} #$ {{#if: %$AntiSymmetricBinaryPredicate]] #$ {{#if: %$Collection |%$Collection|}} ) |%$AntiSymmetricBinaryPredicate #$ {{#if: %$Collection |%$Collection|}} ) ]]|}}


name in URL: Assertion#(_%$isa_%$AntiSymmetricBinaryPredicate_%$Collection_): %$isa


name in URL: ( %$isa )


Arbitrary Number: ( %$isa %$AntiSymmetricBinaryPredicate %$Collection )


TRY 0: ( (%20%25%24%26%27isa%20%24Assertion%20%24Collection%20%29 )

#$AntiSymmetricBinaryPredicate

{{assertionMELD/1|001|

(#$isa #$AntiSymmetricBinaryPredicate #$Collection )

{{assertionMELD/2|002|

(#$genls #$AntiSymmetricBinaryPredicate #$BinaryPredicate )

{{assertionMELD/3|003|

(#$implies 
   (#$and 
      (#$isa ?SLOT #$AntiSymmetricBinaryPredicate) 
      (#$isa ?SLOT #$IrreflexiveBinaryPredicate) ) 
   (#$isa ?SLOT #$AsymmetricBinaryPredicate)
)

;;; #$Assertion

004
(#$isa #$Assertion #$Collection)
005
(#$genls #$Assertion #$CycIndexedTerm)
006
(#$genls #$Assertion #$IndividualObject)


;;; #$AsymmetricBinaryPredicate

007
(#$isa #$AsymmetricBinaryPredicate #$Collection )
008
(#$genls #$AsymmetricBinaryPredicate #$AntiSymmetricBinaryPredicate )
009
(#$genls #$AsymmetricBinaryPredicate]] #$IrreflexiveBinaryPredicate )
010
(#$not (#$and 
     (#$isa ?PRED #$AsymmetricBinaryPredicate) 
     (?PRED ?ARG1 ?ARG2) 
     (?PRED ?ARG2 ?ARG1)
                       ) )
011
(#$implies 
   (#$and 
      (#$isa ?Q #$AsymmetricBinaryPredicate) 
      (#$genlPreds ?P ?Q)
   ) 
   (#$isa ?P #$AsymmetricBinaryPredicate)
)
012
(#$implies 
    (#$isa ?PRED #$AsymmetricBinaryPredicate) 
    (#$negationInverse ?PRED ?PRED)
)

;;; #$AttributeValue

013
(#$isa #$AttributeValue #$Collection)
014
(#$genls #$AttributeValue #$IndividualObject)

This category currently contains no pages or media.