MELD features/Appendix C/0
From Public Domain Knowledge Bank
Revision as of 18:27, 30 September 2019 by DavidWhitten (talk | contribs) (Created page with "<noinclude> MELD features </noinclude> = Appendix C: BNF Grammar for MELD = This BNF can be used to check for syntactic well-formedness of a MELD formula, and -- coupled...")
MELD features
Appendix C: BNF Grammar for MELD
This BNF can be used to check for syntactic well-formedness of a MELD formula, and -- coupled with the 650 formulas above in Appendix A, -- to check a MELD formula for semantic well-formedness as well.
Assume the following Terminals (token-level non-terminals)
<Character> <String> <Number> <Symbol> <Variable> Assume the following MELD data object: <Constant> The empty expansion is: <epsilon> ;;;;;;;;;;;;;;;;;;;;;;;; ;; Syntactic Constraints ;;;;;;;;;;;;;;;;;;;;;;;; <Formula> ::= #$True | #$False | <Variable> | <Literal> | <NotForm> | <AndForm> | <OrForm> | <XorForm> | <ImpForm> | <EquivForm> | <UnivForm> | <ExistForm> | <ExistExactForm> | <ExistUBoundForm> | <ExistLBoundForm> <Formula-Seq> ::= <Formula> <Formula-Seq> | . <Variable> | <epsilon> <NotForm> ::= ( #$not <Formula> ) <AndForm> ::= ( #$and <Formula-Seq> ) <OrForm> ::= ( #$or <Formula-Seq> ) <XorForm> ::= ( #$xor <Formula> <Formula> ) <ImpForm> ::= ( #$implies <Formula> <Formula> ) <EquivForm> ::= ( #$equivalent <Formula> <Formula> ) <UnivForm> ::= ( #$forAll <Variable> <Formula> ) <ExistForm> ::= ( #$thereExists <Variable> <Formula> ) <ExistExactForm> ::= ( #$thereExistExactly <1stOrderTerm> <Variable> <Formula> ) <ExistUBoundForm> ::= ( #$thereExistAtMost <1stOrderTerm> <Variable> <Formula> ) <ExistLBoundForm> ::= ( #$thereExistAtLeast <1stOrderTerm> <Variable> <Formula> ) <Literal> ::= <AtomicFormula> | ( #$not <AtomicFormula> ) <AtomicFormula> ::= ( <Predicate> <Argument-Seq> ) <Argument-Seq> ::= <2ndOrderTerm> <Argument-Seq> | . <Variable> | <epsilon> <Predicate> ::= <Rep1stOrderTerm> <FunctionExp> ::= ( <Function> <Argument-Seq> ) <Function> ::= <Rep1stOrderTerm> <2ndOrderTerm> ::= <1stOrderTerm> | <Formula> <1stOrderTerm> ::= <Rep1stOrderTerm> | <PrimitiveTerm> <Rep1stOrderTerm> ::= <Constant> | <FunctionExp> | <Variable> <PrimitiveTerm> ::= <Character> | <String> | <Number> | <Symbol> | <Variable> ;;;;;;;;;;;;;;;;;;;;;;; ;; Semantic Constraints ;;;;;;;;;;;;;;;;;;;;;;; For <ExistExactForm> : 1st arg must denote a positive integer For <ExistUBoundForm> : 1st arg must denote a positive integer For <ExistLBoundForm> : 1st arg must denote a positive integer For <Function> : when <Function> is ground (#$isa <Function> #$NonPredicateFunction) must be true For <Predicate> : when <Predicate> is ground (#$isa <Predicate> #$Predicate) must be true Relation Arity Constraints: For <FunctionExp> : when <Function> is ground either (#$isa <Function> #$VariableArityRelation) or (#$arity <Function> <N>) and <N> is a non-negative integer and if <Argument-Seq> is terminated by . <Variable> the number of <2ndOrderTerm>s in <Argument-Seq> must be less than or equal to <N> else the number of <2ndOrderTerm>s in <Argument-Seq> must be equal to <N> For <AtomicFormula> : when <Predicate> is ground either (#$isa <Predicate> #$VariableArityRelation) or (#$arity <Predicate> <N>) and <N> is a non-negative integer and if <Argument-Seq> is terminated by . <Variable> the number of <2ndOrderTerm>s in <Argument-Seq> must be less than or equal to <N> else the number of <2ndOrderTerm>s in <Argument-Seq> must be equal to <N> Relation Argument Constraints: For <FunctionExp> : each term in <Argument-Seq> must satisfy all applicable arg constraints (e.g., #$arg1Isa, #$interArgIsa2-1, ...) or <AtomicFormula> : each term in <Argument-Seq> must satisfy all applicable arg constraints (e.g., #$arg1Isa, #$interArgIsa2-1, ...)