Difference between revisions of "MELD features/Appendix A"
DavidWhitten (talk | contribs) (Created page with "<noinclude> MELD features</noinclude> = Appendix A: Formulas true in every MELD KB = As we remarked above, the syntactic component of MELD includes a large number of con...") |
(No difference)
|
Revision as of 18:22, 30 September 2019
MELD features
Contents
- 1 Appendix A: Formulas true in every MELD KB
- 1.1 ;;; #$AntiSymmetricBinaryPredicate
- 1.2 ;;; #$Assertion
- 1.3 ;;; #$AsymmetricBinaryPredicate
- 1.4 ;;; #$AttributeValue
- 1.5 ;;; #$BaseKB
- 1.6 ;;; #$BinaryPredicate
- 1.7 ;;; #$BookkeepingMt
- 1.8 ;;; #$BookkeepingPredicate
- 1.9 ;;; #$BroadMicrotheory
- 1.10 ;;; #$Collection
- 1.11 ;;; #$CollectionDenotingFunction
- 1.12 ;;; #$CommutativeRelation
- 1.13 ;;; #$CycELVariable
- 1.14 ;;; #$CycExpression
- 1.15 ;;; #$CycFormula
- 1.16 ;;; #$CycIndexedTerm
- 1.17 ;;; #$CycSystemList
- 1.18 ;;; #$CycSystemString
- 1.19 ;;; #$CycSystemSymbol
- 1.20 ;;; #$Cyclist
- 1.21 ;;; #$CyclistsMt
- 1.22 ;;; #$DefaultMonotonicPredicate
- 1.23 ;;; #$EvaluatableFunction
- 1.24 ;;; #$False
- 1.25 ;;; #$Format
- 1.26 ;;; #$ForwardInferencePSC
- 1.27 ;;; #$FunctionTheMathematicalType
- 1.28 ;;; #$Guest
- 1.29 ;;; #$HumanCyclist
- 1.30 ;;; #$IndividualObject
- 1.31 ;;; #$InferenceRelatedBookkeepingPredicate
- 1.32 ;;; #$Integer
- 1.33 ;;; #$IntervalEntry
- 1.34 ;;; #$IrreflexiveBinaryPredicate
- 1.35 ;;; #$ListTheFormat
- 1.36 ;;; #$Microtheory
- 1.37 ;;; #$NonNegativeInteger
- 1.38 ;;; #$NonPredicateFunction
- 1.39 ;;; #$PositiveInteger
- 1.40 ;;; #$Predicate
- 1.41 ;;; #$ProblemSolvingCntxt
- 1.42 ;;; #$QuaternaryPredicate
- 1.43 ;;; #$QuintaryPredicate
- 1.44 ;;; #$RealNumber
- 1.45 ;;; #$ReflexiveBinaryPredicate
- 1.46 ;;; #$ReifiableFunction
- 1.47 ;;; #$ReifiableTerm
- 1.48 ;;; #$Relationship
- 1.49 ;;; #$Set-Mathematical
- 1.50 ;;; #$SetOrCollection
- 1.51 ;;; #$SetTheFormat
- 1.52 ;;; #$SiblingDisjointAttributeType
- 1.53 ;;; #$SiblingDisjointCollection
- 1.54 ;;; #$SingleEntry
- 1.55 ;;; #$SkolemFuncN
- 1.56 ;;; #$SkolemFunction
- 1.57 ;;; #$SubAbs
- 1.58 ;;; #$SymmetricBinaryPredicate
- 1.59 ;;; #$TemporalObject
- 1.60 ;;; #$TernaryPredicate
- 1.61 ;;; #$TheSet
- 1.62 ;;; #$TheTerm
- 1.63 ;;; #$Thing
- 1.64 ;;; #$TransitiveBinaryPredicate
- 1.65 ;;; #$True
- 1.66 ;;; #$UnaryPredicate
- 1.67 ;;; #$UnaryTypePredicate
- 1.68 ;;; #$VariableArityRelation
- 1.69 ;;; #$abnormal
- 1.70 ;;; #$afterAdding
- 1.71 ;;; #$afterRemoving
- 1.72 ;;; #$and
- 1.73 ;;; #$arg1Format
- 1.74 ;;; #$arg1Genl
- 1.75 ;;; #$arg1Isa
- 1.76 ;;; #$arg2Format
- 1.77 ;;; #$arg2Genl
- 1.78 ;;; #$arg2Isa
- 1.79 ;;; #$arg3Format
- 1.80 ;;; #$arg3Genl
- 1.81 ;;; #$arg3Isa
- 1.82 ;;; #$arg4Format
- 1.83 ;;; #$arg4Genl
- 1.84 ;;; #$arg4Isa
- 1.85 ;;; #$arg5Format
- 1.86 ;;; #$arg5Genl
- 1.87 ;;; #$arg5Isa
- 1.88 ;;; #$argsGenl
- 1.89 ;;; #$argsIsa
- 1.90 ;;; #$arity
- 1.91 ;;; #$coExtensional
- 1.92 ;;; #$comment
- 1.93 ;;; #$cyclistNotes
- 1.94 ;;; #$defnIff
- 1.95 ;;; #$defnNecessary
- 1.96 ;;; #$defnSufficient
- 1.97 ;;; #$different
- 1.98 ;;; #$disjointWith
- 1.99 ;;; #$elementOf
- 1.100 ;;; #$equals
- 1.101 ;;; #$exceptFor
- 1.102 ;;; #$exceptWhen
- 1.103 ;;; #$forAll
- 1.104 ;;; #$genlAttributes
- 1.105 ;;; #$genlInverse
- 1.106 ;;; #$genlMt
- 1.107 ;;; #$genlPreds
- 1.108 ;;; #$genls
- 1.109 ;;; #$hasAttributes
- 1.110 ;;; #$holdsIn
- 1.111 ;;; #$implies
- 1.112 ;;; #$interArgIsa1-2
- 1.113 ;;; #$interArgIsa1-3
- 1.114 ;;; #$interArgIsa1-4
- 1.115 ;;; #$interArgIsa1-5
- 1.116 ;;; #$interArgIsa2-1
- 1.117 ;;; #$interArgIsa2-3
- 1.118 ;;; #$interArgIsa2-4
- 1.119 ;;; #$interArgIsa2-5
- 1.120 ;;; #$interArgIsa3-1
- 1.121 ;;; #$interArgIsa3-2
- 1.122 ;;; #$interArgIsa3-4
- 1.123 ;;; #$interArgIsa3-5
- 1.124 ;;; #$interArgIsa4-1
- 1.125 ;;; #$interArgIsa4-2
- 1.126 ;;; #$interArgIsa4-3
- 1.127 ;;; #$interArgIsa4-5
- 1.128 ;;; #$interArgIsa5-1
- 1.129 ;;; #$interArgIsa5-2
- 1.130 ;;; #$interArgIsa5-3
- 1.131 ;;; #$interArgIsa5-4
- 1.132 ;;; #$relationExistsAll
- 1.133 ;;; #$relationExistsCountAll
- 1.134 ;;; #$isa
- 1.135 ;;; #$ist
- 1.136 ;;; #$lispDefun
- 1.137 ;;; #$minimizeExtent
- 1.138 ;;; #$mtInferenceFunction
- 1.139 ;;; #$myCreationTime
- 1.140 ;;; #$myCreator
- 1.141 ;;; #$negationAttribute
- 1.142 ;;; #$negationInverse
- 1.143 ;;; #$negationPreds
- 1.144 ;;; #$not
- 1.145 ;;; #$oldConstantName
- 1.146 ;;; #$or
- 1.147 ;;; #$relationAllExists
- 1.148 ;;; #$relationAllExistsCount
- 1.149 ;;; #$requiredArg1Pred
- 1.150 ;;; #$requiredArg2Pred
- 1.151 ;;; #$resultgenl
- 1.152 ;;; #$resultIsa
- 1.153 ;;; #$satisfiesDescription
- 1.154 ;;; #$siblingDisjointExceptions
- 1.155 ;;; #$termOfUnit
- 1.156 ;;; #$thereExistAtLeast
- 1.157 ;;; #$thereExistAtMost
- 1.158 ;;; #$thereExistExactly
- 1.159 ;;; #$thereExists
Appendix A: Formulas true in every MELD KB
As we remarked above, the syntactic component of MELD includes a large number of constant terms (you can think of these as "reserved words" in the MELD language), and the semantic component of MELD includes a large number of sentences involving and interrelating these terms. This set of sentences forms a coherent self-sufficient KB -- the MELD KERNEL KB -- which forms the upper (most general) part of every MELD KB, including, e.g., the Cyc KB, the HPKB IKB, etc.
Herewith is that list of approximately 650 sentences -- each is a closed, well-formed MELD formula.
All of the MELD constants mentioned in these assertions should be thought of as MELD "reserved words." These terms, of which there are about 160, occur below on comment lines, just before the set of mandatory formulas involving them; each of those comment lines begins with three semicolons in a row; e.g., ;;; #$AntiSymmetricBinaryPredicate.
The formulas, and terms, are not commented or explained, below. If one browses through the Cyc KB or the HPKB IKB, one can read the documentation for each of these terms, etc. That is how you, a human reader, can most easily become familiar with the ontology and the semantics of MELD. Just as the BNF in Appendix C, the long list of formulas below (here in Appendix B) is provided more to be machine- than human- readable.
We've arranged these in such a fashion that (most) duplicates have been eliminated. Thus, in the case of one of the first few assertions,
(#$genls #$AntiSymmetricBinaryPredicate #$BinaryPredicate),
that assertion is listed once, under ;;; #$AntiSymmetricBinaryPredicate, not again under ;;; #$BinaryPredicate.
We've prefixed each MELD term with the characters #$. This may facilitate reading mechanically; if you don't care or want this, just do a systematic replace of #$ by the empty string. It will be useful in distinguishing MELD constant names from the names of C (or Lisp) functions which are called to implement some of the low-level bookkeeping, and may be useful in distinguishing MELD constant names from numbers (e.g., distinguishing the MELD constant named 42 from the number 42.)
Let us reiterate that MELD is a declarative language with no procedural information of any kind in any MELD formula, including these formulas.
Finally, you may notice that about 10 of the 160 MELD constant terms below contain the word "Cyc"; this reflects the origins of those terms. We could just as well have called those ten . . .Cyc. . . terms . . .MELD. . . instead; the absolute names are not so important as agreeing on a fixed vocabulary of names for constants.
This is the MELD semantic standard; please do not rename any of these 160 terms, or remove/violate any of these 650 formulas:
;;; #$AntiSymmetricBinaryPredicate
001 (#$isa #$AntiSymmetricBinaryPredicate #$Collection )
002 (#$genls #$AntiSymmetricBinaryPredicate #$BinaryPredicate )
003 (#$implies (#$and (#$isa ?SLOT #$AntiSymmetricBinaryPredicate) (#$isa ?SLOT #$IrreflexiveBinaryPredicate) ) (#$isa ?SLOT #$AsymmetricBinaryPredicate) )
;;; #$Assertion
004 (#$isa #$Assertion #$Collection)
005 (#$genls #$Assertion #$CycIndexedTerm)
006 (#$genls #$Assertion #$IndividualObject)
;;; #$AsymmetricBinaryPredicate
007 (#$isa #$AsymmetricBinaryPredicate #$Collection )
008 (#$genls #$AsymmetricBinaryPredicate #$AntiSymmetricBinaryPredicate )
009 (#$genls #$AsymmetricBinaryPredicate]] #$IrreflexiveBinaryPredicate )
010 (#$not (#$and (#$isa ?PRED #$AsymmetricBinaryPredicate) (?PRED ?ARG1 ?ARG2) (?PRED ?ARG2 ?ARG1) ) )
011 (#$implies (#$and (#$isa ?Q #$AsymmetricBinaryPredicate) (#$genlPreds ?P ?Q) ) (#$isa ?P #$AsymmetricBinaryPredicate) )
012 (#$implies (#$isa ?PRED #$AsymmetricBinaryPredicate) (#$negationInverse ?PRED ?PRED) )
;;; #$AttributeValue
013 (#$isa #$AttributeValue #$Collection)
014 (#$genls #$AttributeValue #$IndividualObject)
;;; #$BaseKB
015 (#$isa #$BaseKB #$BroadMicrotheory)
016 (#$implies (#$isa ?MIC #$Microtheory) (#$genlMt ?MIC #$BaseKB) )
;;; #$BinaryPredicate
017 (#$isa #$BinaryPredicate #$Collection)
018 (#$genls #$BinaryPredicate #$Predicate)
019 (#$implies (#$isa ?P #$BinaryPredicate) (#$arity ?P 2 ) )
;;; #$BookkeepingMt
020 (#$isa #$BookkeepingMt #$Microtheory)
021 (#$genlMt #$BookkeepingMt #$CyclistsMt)
022 (#$genlMt #$BookkeepingMt #$BaseKB)
;;; #$BookkeepingPredicate
023 (#$isa #$BookkeepingPredicate #$Collection)
024 (#$genls #$BookkeepingPredicate #$Predicate)
;;; #$BroadMicrotheory
025 (#$isa #$BroadMicrotheory #$Collection)
026 (#$genls #$BroadMicrotheory #$Microtheory)
;;; #$Collection
see also 023. 025
027 (#$isa #$Collection #$Collection)
028 (#$genls #$Collection #$SetOrCollection)
;;; #$CollectionDenotingFunction
029 (#$isa #$CollectionDenotingFunction #$Collection)
030 (#$genls #$CollectionDenotingFunction #$ReifiableFunction )
;;; #$CommutativeRelation
031 (#$isa #$CommutativeRelation #$Collection)
032 (#$genls #$CommutativeRelation #$Relationship)
;;; #$CycELVariable
033 (#$isa #$CycELVariable #$Collection)
034 (#$genls #$CycELVariable #$CycSystemSymbol)
;;; #$CycExpression
035 (#$isa #$CycExpression #$Collection )
036 (#$genls #$CycExpression #$IndividualObject)
;;; #$CycFormula
037 (#$isa #$CycFormula #$Collection)
038 (#$genls #$CycFormula #$CycExpression)
;;; #$CycIndexedTerm
039 (#$isa #$CycIndexedTerm #$Collection)
040 (#$genls #$CycIndexedTerm]] #$Thing)
;;; #$CycSystemList
041 (#$isa #$CycSystemList #$Collection)
042 (#$genls #$CycSystemList #$IndividualObject)
;;; #$CycSystemString
043 (#$isa #$CycSystemString #$Collection)
044 (#$genls #$CycSystemString #$IndividualObject)
;;; #$CycSystemSymbol
045 (#$isa #$CycSystemSymbol #$Collection)
046 (#$genls #$CycSystemSymbol #$IndividualObject )
;;; #$Cyclist
047 (#$isa #$Cyclist #$Collection )
048 (#$genls #$Cyclist #$TemporalObject )
;;; #$CyclistsMt
049 (#$isa #$CyclistsMt #$Microtheory )
050 (#$genlMt #$CyclistsMt #$BaseKB)
;;; #$DefaultMonotonicPredicate
051 (#$isa #$DefaultMonotonicPredicate #$Collection)
052 (#$genls #$DefaultMonotonicPredicate #$Predicate)
;;; #$EvaluatableFunction
053 (#$isa #$EvaluatableFunction #$Collection)
054 (#$genls #$EvaluatableFunction #$FunctionTheMathematicalType )
;;; #$False
055 (#$isa #$False #$IndividualObject )
;;; #$Format
056 (#$isa #$Format #$Collection )
057 (#$genls #$Format #$IndividualObject )
;;; #$ForwardInferencePSC
058 (#$isa #$ForwardInferencePSC #$ProblemSolvingCntxt )
059 (#$genlMt #$ForwardInferencePSC #$BaseKB)
;;; #$FunctionTheMathematicalType
060 (#$isa #$FunctionTheMathematicalType #$Collection)
061 (#$genls #$FunctionTheMathematicalType #$Relationship)
;;; #$Guest
062 (#$isa #$Guest #$HumanCyclist )
;;; #$HumanCyclist
063 (#$isa #$HumanCyclist #$Collection )
064 (#$genls #$HumanCyclist #$Cyclist )
;;; #$IndividualObject
065 (#$isa #$IndividualObject #$Collection )
066 (#$genls #$IndividualObject #$Thing )
;;; #$InferenceRelatedBookkeepingPredicate
067 (#$isa #$InferenceRelatedBookkeepingPredicate #$Collection )
068 (#$genls #$InferenceRelatedBookkeepingPredicate #$BookkeepingPredicate )
;;; #$Integer
069 (#$isa #$Integer #$Collection )
070 ( #$genls #$Integer #$RealNumber )
;;; #$IntervalEntry
071 ( #$isa #$IntervalEntry #$Format)
;;; #$IrreflexiveBinaryPredicate
072 ( #$isa #$IrreflexiveBinaryPredicate #$Collection )
073 ( #$genls #$IrreflexiveBinaryPredicate #$BinaryPredicate )
074 (#$not (#$and (#$isa ?PRED #$IrreflexiveBinaryPredicate) (?PRED ?OBJ ?OBJ) ) )
075 (#$implies (#$and (#$isa ?Q #$IrreflexiveBinaryPredicate) (#$different ?P ?Q) (#$genlPreds ?P ?Q) ) (#$isa ?P #$IrreflexiveBinaryPredicate) )
;;; #$ListTheFormat
076 (#$isa #$ListTheFormat #$Format)
;;; #$Microtheory
077 (#$isa #$Microtheory #$Collection )
078 (#$genls #$Microtheory #$IndividualObject)
;;; #$NonNegativeInteger
079 (#$isa #$NonNegativeInteger #$Collection)
080 (#$genls #$NonNegativeInteger #$Integer)
;;; #$NonPredicateFunction
081 (#$isa #$NonPredicateFunction #$Collection )
082 (#$genls #$NonPredicateFunction #$FunctionTheMathematicalType )
;;; #$PositiveInteger
083 (#$isa #$PositiveInteger #$Collection )
084 (#$genls #$PositiveInteger #$NonNegativeInteger )
;;; #$Predicate
085 (#$isa #$Predicate #$Collection)
086 (#$genls #$Predicate #$FunctionTheMathematicalType )
;;; #$ProblemSolvingCntxt
087 (#$isa #$ProblemSolvingCntxt #$Collection )
088 (#$genls #$ProblemSolvingCntxt #$Microtheory )
;;; #$QuaternaryPredicate
089 (#$isa #$QuaternaryPredicate #$Collection)
090 (#$genls #$QuaternaryPredicate #$Predicate )
091 (#$implies (#$isa ?P #$QuaternaryPredicate ) (#$arity ?P 4 ) )
;;; #$QuintaryPredicate
092 (#$isa #$QuintaryPredicate #$Collection)
093 (#$genls #$QuintaryPredicate #$Predicate)
094 (#$implies (#$isa ?P #$QuintaryPredicate ) (#$arity ?P 5) )
;;; #$RealNumber
095 (#$isa #$RealNumber #$Collection )
096 (#$genls #$RealNumber #$AttributeValue )
;;; #$ReflexiveBinaryPredicate
097 (#$isa #$ReflexiveBinaryPredicate #$Collection )
098 (#$genls #$ReflexiveBinaryPredicate #$BinaryPredicate )
099 (#$implies (#$isa ?PRED #$ReflexiveBinaryPredicate ) (?PRED ?OBJ ?OBJ) )
;;; #$ReifiableFunction
100 (#$isa #$ReifiableFunction #$Collection )
101 (#$genls #$ReifiableFunction #$NonPredicateFunction )
;;; #$ReifiableTerm
102 (#$isa #$ReifiableTerm #$ReifiableTerm )
103 (#$isa #$ReifiableTerm #$Collection )
104 (#$genls #$ReifiableTerm #$CycIndexedTerm )
;;; #$Relationship
105 (#$isa #$Relationship #$Collection)
106 (#$genls #$Relationship #$IndividualObject )
;;; #$Set-Mathematical
107 (#$isa #$Set-Mathematical #$Collection)
108 (#$genls #$Set-Mathematical #$SetOrCollection)
;;; #$SetOrCollection
109 (#$isa #$SetOrCollection #$Collection )
110 (#$genls #$SetOrCollection #$Thing )
;;; #$SetTheFormat
111 (#$isa #$SetTheFormat #$Format)
;;; #$SiblingDisjointAttributeType
112 (#$isa #$SiblingDisjointAttributeType #$SiblingDisjointCollection)
113 (#$genls #$SiblingDisjointAttributeType #$Collection)
114 (#$implies (#$and (#$isa ?C #$SiblingDisjointAttributeType ) (#$isa ?A1 ?C ) (#$isa ?A2 ?C ) (#$different ?A1 ?A2 ) (#$hasAttributes ?G072 ?A1 ) (#$hasAttributes ?G072 ?A2 ) ) (#$or (#$genlAttributes ?A1 ?A2) (#$genlAttributes ?A2 ?A1) ) )
;;; #$SiblingDisjointCollection
115 (#$isa #$SiblingDisjointCollection #$Collection)
116 (#$genls #$SiblingDisjointCollection #$Collection)
;;; #$SingleEntry
117 (#$isa #$SingleEntry #$Format )
;;; #$SkolemFuncN
118 (#$isa #$SkolemFuncN #$ReifiableFunction)
119 (#$arity #$SkolemFuncN 3)
120 (#$arg1Isa #$SkolemFuncN #$CycSystemList)
121 (#$arg2Isa #$SkolemFuncN #$CycSystemSymbol )
122 (#$arg3Isa #$SkolemFuncN #$RealNumber)
;;; #$SkolemFunction
123 (#$isa #$SkolemFunction #$Collection)
124 (#$genls #$SkolemFunction #$ReifiableFunction)
125 (#$arity #$SkolemFunction 2 )
126 (#$arg2Isa #$SkolemFunction #$CycSystemSymbol)
127 (#$arg1Isa #$SkolemFunction #$CycSystemList)
;;; #$SubAbs
128 (#$isa #$SubAbs #$Format)
;;; #$SymmetricBinaryPredicate
129 (#$isa #$SymmetricBinaryPredicate #$Collection)
130 (#$genls #$SymmetricBinaryPredicate #$CommutativeRelation )
131 (#$genls #$SymmetricBinaryPredicate #$BinaryPredicate )
132 (#$implies (#$and (#$isa ?PRED #$SymmetricBinaryPredicate) (?PRED ?ARG1 ?ARG2) ) (?PRED ?ARG2 ?ARG1) )
133 (#$implies (#$isa ?PRED #$SymmetricBinaryPredicate ) (#$genlInverse ?PRED ?PRED ) )
;;; #$TemporalObject
134 (#$isa #$TemporalObject #$Collection)
135 (#$genls #$TemporalObject #$IndividualObject )
;;; #$TernaryPredicate
136 (#$isa #$TernaryPredicate #$Collection )
137 (#$genls #$TernaryPredicate #$Predicate )
138 (#$not (#$and (#$isa ?X #$TernaryPredicate ) (#$arg4Isa ?X ?Y ) ) )
139 (#$implies (#$isa ?P #$TernaryPredicate ) (#$arity ?P 3 ) )
;;; #$TheSet
140 (#$isa #$TheSet #$VariableArityRelation ) 141 (#$isa #$TheSet #$NonPredicateFunction) 142 (#$resultIsa #$TheSet #$Set-Mathematical) 143 (#$argsIsa #$TheSet #$Thing )
;;; #$TheTerm
144 (#$isa #$TheTerm #$Collection )
145 (#$genls #$TheTerm #$Thing )
;;; #$Thing
146 (#$isa #$Thing #$Collection )
147 (#$isa ?OBJ #$Thing)
;;; #$TransitiveBinaryPredicate
148 (#$isa #$TransitiveBinaryPredicate #$Collection )
149 (#$genls #$TransitiveBinaryPredicate #$BinaryPredicate)
150 (#$implies (#$and (#$isa ?U #$TransitiveBinaryPredicate ) ( ?U ?X ?Z ) ( ?U ?Z ?VAR3 ) ) ( ?U ?X ?VAR3 ) )
;;; #$True
151 (#$isa #$True #$IndividualObject )
;;; #$UnaryPredicate
152 (#$isa #$UnaryPredicate #$Collection )
153 (#$genls #$UnaryPredicate #$Predicate )
154 (#$implies (#$isa ?P #$UnaryPredicate ) (#$arity ?P 1 ) )
;;; #$UnaryTypePredicate
155 (#$isa #$UnaryTypePredicate #$Collection )
156 (#$genls #$UnaryTypePredicate #$UnaryPredicate )
157 (#$genls #$UnaryTypePredicate #$InferenceRelatedBookkeepingPredicate )
;;; #$VariableArityRelation
158 (#$isa #$VariableArityRelation #$Collection )
159 (#$genls #$VariableArityRelation #$Relationship )
;;; #$abnormal
160 (#$isa #$abnormal #$DefaultMonotonicPredicate )
161 (#$isa #$abnormal #$BinaryPredicate )
162 (#$arity #$abnormal 2 )
163 (#$arg1Isa #$abnormal #$CycSystemList )
164 (#$arg2Isa #$abnormal #$Assertion )
;;; #$afterAdding
165 (#$isa #$afterAdding #$InferenceRelatedBookkeepingPredicate )
166 (#$isa #$afterAdding #$BinaryPredicate )
167 (#$arity #$afterAdding 2 )
168 (#$arg1Isa #$afterAdding #$Predicate )
169 (#$arg2Isa #$afterAdding #$CycSystemSymbol )
;;; #$afterRemoving
170 (#$isa #$afterRemoving #$InferenceRelatedBookkeepingPredicate )
171 (#$isa #$afterRemoving #$BinaryPredicate )
172 (#$arity #$afterRemoving 2 )
173 (#$arg1Isa #$afterRemoving #$Predicate )
174 (#$arg2Isa #$afterRemoving #$CycSystemSymbol)
;;; #$and
175 (#$isa #$and #$CommutativeRelation )
176 (#$isa #$and #$VariableArityRelation )
178 (#$argsIsa #$and #$CycFormula )
179 (#$resultIsa #$and #$CycFormula )
;;; #$arg1Format
180 (#$isa #$arg1Format #$BinaryPredicate)
181 (#$arity #$arg1Format 2 )
182 (#$arg1Isa #$arg1Format #$Predicate )
183 (#$arg2Isa #$arg1Format #$Format )
;;; #$arg1Genl
184 (#$isa #$arg1Genl #$BinaryPredicate )
185 (#$arity #$arg1Genl 2 )
186 (#$arg1Isa #$arg1Genl #$Relationship )
187 (#$arg2Isa #$arg1Genl #$Collection )
;;; #$arg1Isa
188 (#$isa #$arg1Isa #$DefaultMonotonicPredicate )
189 (#$isa #$arg1Isa #$BinaryPredicate )
190 (#$arity #$arg1Isa 2)
191 (#$arg1Isa #$arg1Isa #$Relationship )
192 (#$arg2Isa #$arg1Isa #$Collection )
;;; #$arg2Format
193 (#$isa #$arg2Format #$BinaryPredicate )
194 (#$arity #$arg2Format 2 )
195 (#$arg1Isa #$arg2Format #$Predicate )
196 (#$arg2Isa #$arg2Format #$Format )
;;; #$arg2Genl
197 (#$isa #$arg2Genl #$BinaryPredicate )
198 (#$arity #$arg2Genl 2 )
199 (#$arg1Isa #$arg2Genl #$Relationship )
200 (#$arg2Isa #$arg2Genl #$Collection )
;;; #$arg2Isa
201 (#$isa #$arg2Isa #$DefaultMonotonicPredicate )
202 (#$isa #$arg2Isa #$BinaryPredicate )
203 (#$arity #$arg2Isa 2 )
204 (#$arg1Isa #$arg2Isa #$Relationship )
205 (#$arg2Isa #$arg2Isa #$Collection )
;;; #$arg3Format
206 (#$isa #$arg3Format #$BinaryPredicate)
207 (#$arity #$arg3Format 2 )
208 (#$arg1Isa #$arg3Format #$Predicate )
209 (#$arg2Isa #$arg3Format #$Format )
;;; #$arg3Genl
210 (#$isa #$arg3Genl #$BinaryPredicate)
211 (#$arity #$arg3Genl 2)
212 (#$arg1Isa #$arg3Genl #$Relationship)
213 (#$arg2Isa #$arg3Genl #$Collection)
;;; #$arg3Isa
214 (#$isa #$arg3Isa #$DefaultMonotonicPredicate )
215 (#$isa #$arg3Isa #$BinaryPredicate )
216 (#$arity #$arg3Isa 2 )
217 (#$arg1Isa #$arg3Isa #$Relationship )
218 (#$arg2Isa #$arg3Isa #$Collection )
;;; #$arg4Format
219 (#$isa #$arg4Format #$BinaryPredicate)
220 (#$arity #$arg4Format 2 )
221 (#$arg1Isa #$arg4Format #$Predicate)
222 (#$arg2Isa #$arg4Format #$Format)
;;; #$arg4Genl
223 (#$isa #$arg4Genl #$BinaryPredicate ) 224 (#$arity #$arg4Genl 2)
225 (#$arg1Isa #$arg4Genl #$Relationship)
226 (#$arg2Isa #$arg4Genl #$Collection)
;;; #$arg4Isa
227 (#$isa #$arg4Isa #$DefaultMonotonicPredicate)
228 (#$isa #$arg4Isa #$BinaryPredicate)
229 (#$arity #$arg4Isa 2)
230 (#$arg1Isa #$arg4Isa #$Relationship)
231 (#$arg2Isa #$arg4Isa #$Collection)
;;; #$arg5Format
232 (#$isa #$arg5Format #$BinaryPredicate)
233 (#$arity #$arg5Format 2 )
234 (#$arg1Isa #$arg5Format #$Predicate)
235 (#$arg2Isa #$arg5Format #$Format)
;;; #$arg5Genl
236 (#$isa #$arg5Genl #$BinaryPredicate )
237 (#$arity #$arg5Genl 2 )
238 (#$arg1Isa #$arg5Genl #$Relationship )
239 (#$arg2Isa #$arg5Genl #$Collection )
;;; #$arg5Isa
240 (#$isa #$arg5Isa #$DefaultMonotonicPredicate)
241 (#$isa #$arg5Isa #$BinaryPredicate)
242 (#$arity #$arg5Isa 2)
243 (#$arg1Isa #$arg5Isa #$Relationship)
244 (#$arg2Isa #$arg5Isa #$Collection)
;;; #$argsGenl
245 (#$isa #$argsGenl #$BinaryPredicate)
246 (#$arity #$argsGenl 2 )
247 (#$arg1Isa #$argsGenl #$Relationship)
248 (#$arg2Isa #$argsGenl #$Collection)
;;; #$argsIsa
249 (#$isa #$argsIsa #$BinaryPredicate )
250 (#$arity #$argsIsa 2 )
251 (#$arg1Isa #$argsIsa #$Relationship )
252 (#$arg2Isa #$argsIsa #$Collection )
;;; #$arity
253 (#$isa #$arity #$DefaultMonotonicPredicate )
254 (#$isa #$arity #$BinaryPredicate )
255 (#$arity #$arity 2 )
256 (#$arg1Isa #$arity #$Relationship)
257 (#$arg2Isa #$arity #$Integer )
;;; #$coExtensional
258 (#$isa #$coExtensional #$SymmetricBinaryPredicate )
259 (#$isa #$coExtensional #$ReflexiveBinaryPredicate )
260 (#$isa #$coExtensional #$TransitiveBinaryPredicate)
261 (#$genlInverse #$coExtensional #$coExtensional )
262 (#$arity #$coExtensional 2 )
263 (#$arg1Isa #$coExtensional #$Collection )
264 (#$arg2Isa #$coExtensional #$Collection)
;;; #$comment
265 (#$isa #$comment #$BinaryPredicate )
266 (#$arity #$comment 2 )
267 (#$arg1Isa #$comment #$CycIndexedTerm )
268 (#$arg2Isa #$comment #$CycSystemString )
;;; #$cyclistNotes
269 (#$isa #$cyclistNotes #$BinaryPredicate )
270 (#$arity #$cyclistNotes 2 )
271 (#$arg1Isa #$cyclistNotes #$CycIndexedTerm )
272 (#$arg2Isa #$cyclistNotes #$CycSystemString )
;;; #$defnIff
273 (#$isa #$defnIff #$InferenceRelatedBookkeepingPredicate )
274 (#$isa #$defnIff #$BinaryPredicate )
275 (#$arity #$defnIff 2 )
276 (#$arg1Isa #$defnIff #$Collection )
277 (#$arg2Isa #$defnIff #$CycSystemSymbol )
278 (#$implies (#$defnIff ?X ?Y ) (#$defnSufficient ?X ?Y ) )
;;; #$defnNecessary
279 (#$isa #$defnNecessary #$BinaryPredicate)
280 (#$arity #$defnNecessary 2 )
281 (#$arg1Isa #$defnNecessary #$Collection)
282 (#$arg2Isa #$defnNecessary #$CycSystemSymbol)
;;; #$defnSufficient
283 (#$isa #$defnSufficient #$InferenceRelatedBookkeepingPredicate )
284 (#$isa #$defnSufficient #$BinaryPredicate )
285 (#$arity #$defnSufficient 2 )
286 (#$arg1Isa #$defnSufficient #$Collection )
287 (#$arg2Isa #$defnSufficient #$CycSystemSymbol)
;;; #$different
288 (#$isa #$different #$VariableArityRelation )
289 (#$isa #$different #$EvaluatableFunction )
290 (#$isa #$different #$Predicate )
291 (#$argsIsa #$different #$Thing )
292 (#$not (#$different ?OBJ ?OBJ) )
;;; #$disjointWith
293 (#$isa #$disjointWith #$DefaultMonotonicPredicate )
294 (#$isa #$disjointWith #$SymmetricBinaryPredicate )
295 (#$isa #$disjointWith #$IrreflexiveBinaryPredicate )
296 (#$genlInverse #$disjointWith #$disjointWith )
297 (#$arity #$disjointWith 2 )
298 (#$arg1Isa #$disjointWith #$SetOrCollection )
299 (#$arg2Isa #$disjointWith #$SetOrCollection )
300 (#$not (#$and (#$isa ?OBJ ?COL1) (#$isa ?OBJ ?COL2) (#$disjointWith ?COL1 ?COL2) ) )
301 (#$implies (#$and (#$disjointWith ?COL ?SUPERSET ) (#$genls ?SUBSET ?SUPERSET ) ) (#$disjointWith ?COL ?SUBSET ) )
302 (#$not (#$and (#$disjointWith ?X ?Y) (#$genls ?X ?Y) ) )
;;; #$elementOf
303 (#$isa #$elementOf #$BinaryPredicate)
304 (#$arity #$elementOf 2)
305 (#$arg1Isa #$elementOf #$Thing)
306 (#$arg2Isa #$elementOf #$SetOrCollection)
;;; #$equals
307 (#$isa #$equals #$DefaultMonotonicPredicate )
308 (#$isa #$equals #$SymmetricBinaryPredicate )
309 (#$isa #$equals #$ReflexiveBinaryPredicate )
310 (#$isa #$equals #$TransitiveBinaryPredicate )
311 (#$genlInverse #$equals #$equals )
312 (#$arity #$equals 2 )
313 (#$arg1Isa #$equals #$Thing )
314 (#$arg2Isa #$equals #$Thing )
;;; #$exceptFor
315 (#$isa #$exceptFor #$Relatio1nship)
316 (#$arity #$exceptFor 2)
317 (#$arg2Isa #$exceptFor #$Assertion)
318 (#$arg1Isa #$exceptFor #$ReifiableTerm )
;;; #$exceptWhen
319 (#$isa #$exceptWhen #$Relationship)
320 (#$arity #$exceptWhen 2 )
321 (#$arg2Isa #$exceptWhen #$Assertion)
322 (#$arg1Isa #$exceptWhen #$CycFormula)
;;; #$forAll
323 (#$isa #$forAll #$Relationship )
324 (#$arity #$forAll 2 )
325 (#$arg2Isa #$forAll #$CycFormula )
326 (#$arg1Isa #$forAll #$CycELVariable )
;;; #$genlAttributes
327 (#$isa #$genlAttributes #$ReflexiveBinaryPredicate)
328 (#$isa #$genlAttributes #$TransitiveBinaryPredicate)
329 (#$arity #$genlAttributes 2 )
330 (#$arg1Isa #$genlAttributes #$AttributeValue )
331 (#$arg2Isa #$genlAttributes #$AttributeValue)
;;; #$genlInverse
332 (#$isa #$genlInverse #$BinaryPredicate)
333 (#$arity #$genlInverse 2 )
334 (#$arg1Isa #$genlInverse #$BinaryPredicate )
335 (#$arg2Isa #$genlInverse #$BinaryPredicate )
336 (#$implies (#$and (#$genlInverse ?PRED ?GEN-PRED) (?PRED ?ARG1 ?ARG2) ) (?GEN-PRED ?ARG2 ?ARG1) )
337 (#$implies (#$and (#$genlInverse ?SPEC-PRED ?PRED) (#$genlInverse ?PRED ?GENL-PRED) ) (#$genlPreds ?SPEC-PRED ?GENL-PRED) )
338 (#$implies (#$and (#$genlInverse ?SPEC-PRED ?PRED) (#$genlPreds ?PRED ?GENL-PRED) ) (#$genlInverse ?SPEC-PRED ?GENL-PRED) )
339 (#$implies (#$and (#$negationPreds ?GENL-PRED ?NEG-PRED ) (#$genlInverse ?SPEC-PRED ?GENL-PRED ) ) (#$negationInverse ?NEG-PRED ?SPEC-PRED ) )
340 (#$implies (#$and (#$negationInverse ?GENL-PRED ?NEG-PRED ) (#$genlInverse ?SPEC-PRED ?GENL-PRED ) ) (#$negationPreds ?NEG-PRED ?SPEC-PRED ) )
341 (#$implies (#$and (#$genlPreds ?SPEC-PRED ?PRED ) (#$genlInverse ?PRED ?GENL-PRED ) ) (#$genlInverse ?SPEC-PRED ?GENL-PRED ) )
;;; #$genlMt
342 (#$isa #$genlMt #$DefaultMonotonicPredicate)
343 (#$isa #$genlMt #$AntiSymmetricBinaryPredicate )
344 (#$isa #$genlMt #$ReflexiveBinaryPredicate )
345 (#$isa #$genlMt #$TransitiveBinaryPredicate)
346 (#$arity #$genlMt 2)
347 (#$arg1Isa #$genlMt #$Microtheory )
348 (#$arg2Isa #$genlMt #$Microtheory )
;;; #$genlPreds
349 (#$isa #$genlPreds #$AntiSymmetricBinaryPredicate )
350 (#$isa #$genlPreds #$ReflexiveBinaryPredicate )
351 (#$isa #$genlPreds #$TransitiveBinaryPredicate )
352 (#$arity #$genlPreds 2 )
353 (#$arg1Isa #$genlPreds #$Predicate )
354 (#$arg2Isa #$genlPreds #$Predicate )
355 (#$implies (#$and (?PRED ?ARG1) (#$genlPreds ?PRED ?GENL-PRED ) ) (?GENL-PRED ?ARG1) )
356 (#$implies (#$and (#$negationPreds ?GENL-PRED ?NEG-PRED ) (#$genlPreds ?SPEC-PRED ?GENL-PRED ) ) (#$negationPreds ?NEG-PRED ?SPEC-PRED ) )
357 (#$implies (#$and (#$negationInverse ?GENL-PRED ?NEG-PRED ) (#$genlPreds ?SPEC-PRED ?GENL-PRED ) ) (#$negationInverse ?NEG-PRED ?SPEC-PRED ) )
358 (#$implies (#$and (#$genlPreds ?PRED ?GENL-PRED ) (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 ) ) (?GENL-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 ) )
359 (#$implies (#$and (#$genlPreds ?PRED ?GENL-PRED) (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4) ) (?GENL-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4) )
360 (#$implies (#$and (#$genlPreds ?PRED ?GENL-PRED) (?PRED ?ARG1 ?ARG2 ?ARG3) ) (?GENL-PRED ?ARG1 ?ARG2 ?ARG3) )
361 (#$implies (#$and (#$genlPreds ?PRED ?GENL-PRED) (?PRED ?ARG1 ?ARG2) ) (?GENL-PRED ?ARG1 ?ARG2 ) )
;;; #$genls
362 (#$isa #$genls #$DefaultMonotonicPredicate )
363 (#$isa #$genls #$ReflexiveBinaryPredicate )
364 (#$isa #$genls #$TransitiveBinaryPredicate )
365 (#$arity #$genls 2 )
366 (#$arg1Isa #$genls #$Collection )
367 (#$arg2Isa #$genls #$Collection )
368 (#$implies (#$and (#$isa ?OBJ ?SUBSET ) (#$genls ?SUBSET ?SUPERSET ) ) (#$isa ?OBJ ?SUPERSET ) )
369 (#$implies (#$resultgenl ?FUNC ?COLL ) (#$genls (?FUNC ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5 ) ?COLL ) )
370 (#$implies (#$resultgenl ?FUNC ?COLL ) (#$genls ( ?FUNC ?ARG1 ?ARG2 ?ARG3 ?ARG4 ) ?COLL ) )
371 (#$implies (#$resultgenl ?FUNC ?COLL) (#$genls (?FUNC ?ARG1 ?ARG2 ?ARG3) ?COLL ) )
372 (#$implies (#$resultgenl ?FUNC ?COLL) (#$genls (?FUNC ?ARG1 ?ARG2) ?COLL ) )
373 (#$implies (#$resultgenl ?FUNC ?COLL) (#$genls (?FUNC ?ARG1) ?COLL) )
;;; #$hasAttributes
374 (#$isa #$hasAttributes #$BinaryPredicate )
375 (#$arity #$hasAttributes 2)
376 (#$arg1Isa #$hasAttributes #$TemporalObject )
377 (#$arg2Isa #$hasAttributes #$AttributeValue )
378 (#$not (#$and (#$hasAttributes ?Z ?X ) (#$hasAttributes ?Z ?Y ) (#$negationAttribute ?X ?Y ) ) )
;;; #$holdsIn
379 (#$isa #$holdsIn #$BinaryPredicate)
380 (#$arity #$holdsIn 2)
381 (#$arg1Isa #$holdsIn #$TemporalObject )
382 (#$arg2Isa #$holdsIn #$CycFormula )
;;; #$implies
383 (#$isa #$implies #$Relationship )
384 (#$arity #$implies 2)
385 (#$arg2Isa #$implies #$CycFormula )
386 (#$arg1Isa #$implies #$CycFormula )
387 (#$resultIsa #$implies #$CycFormula )
;;; #$interArgIsa1-2
388 (#$isa #$interArgIsa1-2 #$TernaryPredicate)
389 (#$arity #$interArgIsa1-2 3)
390 (#$arg1Isa #$interArgIsa1-2 #$Predicate)
391 (#$arg2Isa #$interArgIsa1-2 #$Collection)
392 (#$arg3Isa #$interArgIsa1-2 #$Collection)
393 (#$implies (#$and (#$requiredArg1Pred ?COL-1 ?PRED ) (#$interArgIsa1-2 ?PRED ?COL-1 ?COL-2 ) ) (#$relationAllExists ?PRED ?COL-1 ?COL-2 ) )
394 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL) (?PRED ?INDEP-INS ?DEP-INS) (#$interArgIsa1-2 ?PRED ?INDEP-COL ?DEP-COL) ) (#$isa ?DEP-INS ?DEP-COL) )
;;; #$interArgIsa1-3
395 (#$isa #$interArgIsa1-3 #$TernaryPredicate)
396 (#$arity #$interArgIsa1-3 3)
397 (#$arg1Isa #$interArgIsa1-3 #$Predicate )
398 (#$arg2Isa #$interArgIsa1-3 #$Collection )
399 (#$arg3Isa #$interArgIsa1-3 #$Collection )
400 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa1-3 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?INDEP-INS ?ANY-ARG-2 ?DEP-INS) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa1-4
401 (#$isa #$interArgIsa1-4 #$TernaryPredicate)
402 (#$arity #$interArgIsa1-4 3 )
403 (#$arg1Isa #$interArgIsa1-4 #$Predicate )
404 (#$arg2Isa #$interArgIsa1-4 #$Collection )
405 (#$arg3Isa #$interArgIsa1-4 #$Collection) 406 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL) (#$interArgIsa1-4 ?PRED ?INDEP-COL ?DEP-COL) (?PRED ?INDEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?DEP-INS) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa1-5
407 (#$isa #$interArgIsa1-5 #$TernaryPredicate )
408 (#$arity #$interArgIsa1-5 3 )
409 (#$arg1Isa #$interArgIsa1-5 #$Predicate )
410 (#$arg2Isa #$interArgIsa1-5 #$Collection )
411 (#$arg3Isa #$interArgIsa1-5 #$Collection )
412 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa1-5 ?PRED ?INDEP-COL ?DEP-COL ) ( ?PRED ?INDEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?ANY-ARG-4 ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL) )
;;; #$interArgIsa2-1
413 (#$isa #$interArgIsa2-1 #$TernaryPredicate )
414 (#$arity #$interArgIsa2-1 3 )
415 (#$arg1Isa #$interArgIsa2-1 #$Predicate )
416 (#$arg2Isa [[#$interArgIsa2-1 #$Collection) 417 (#$arg3Isa [[#$interArgIsa2-1 #$Collection) 418 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (?PRED ?DEP-INS ?INDEP-INS ) (#$interArgIsa2-1 ?PRED ?INDEP-COL ?DEP-COL ) ) (#$isa ?DEP-INS ?DEP-COL) )
;;; #$interArgIsa2-3
419 (#$isa #$interArgIsa2-3 #$TernaryPredicate )
420 (#$arity #$interArgIsa2-3 3 )
421 (#$arg1Isa #$interArgIsa2-3 #$Predicate )
422 (#$arg2Isa #$interArgIsa2-3 #$Collection )
423 (#$arg3Isa #$interArgIsa2-3 #$Collection ) 424 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa2-3 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?INDEP-INS ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa2-4
425 (#$isa #$interArgIsa2-4 #$TernaryPredicate )
426 (#$arity #$interArgIsa2-4 3 )
427 (#$arg1Isa #$interArgIsa2-4 #$Predicate )
428 (#$arg2Isa #$interArgIsa2-4 #$Collection )
429 (#$arg3Isa #$interArgIsa2-4 #$Collection ) 430 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa2-4 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?INDEP-INS ?ANY-ARG-3 ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa2-5
431 (#$isa #$interArgIsa2-5 #$TernaryPredicate )
432 (#$arity #$interArgIsa2-5 3 )
433 (#$arg1Isa #$interArgIsa2-5 #$Predicate )
434 (#$arg2Isa #$interArgIsa2-5 #$Collection )
435 (#$arg3Isa #$interArgIsa2-5 #$Collection ) 436 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa2-5 ?PRED ?INDEP-COL ?DEP-COL) (?PRED ?ANY-ARG-1 ?INDEP-INS ?ANY-ARG-3 ?ANY-ARG-4 ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa3-1
437 (#$isa #$interArgIsa3-1 #$TernaryPredicate )
438 (#$arity #$interArgIsa3-1 3 )
439 (#$arg1Isa #$interArgIsa3-1 #$Predicate )
440 (#$arg2Isa #$interArgIsa3-1 #$Collection )
441 (#$arg3Isa #$interArgIsa3-1 #$Collection ) 442 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa3-1 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?DEP-INS ?ANY-ARG-2 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa3-2
443 (#$isa #$interArgIsa3-2 #$TernaryPredicate )
444 (#$arity #$interArgIsa3-2 3 )
445 (#$arg1Isa #$interArgIsa3-2 #$Predicate )
446 (#$arg2Isa #$interArgIsa3-2 #$Collection)
447 (#$arg3Isa #$interArgIsa3-2 #$Collection )
448 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa3-2 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?DEP-INS ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL) )
;;; #$interArgIsa3-4
449 (#$isa #$interArgIsa3-4 #$TernaryPredicate )
450 (#$arity #$interArgIsa3-4 3 )
451 (#$arg1Isa #$interArgIsa3-4 #$Predicate )
452 (#$arg2Isa #$interArgIsa3-4 #$Collection)
453 (#$arg3Isa #$interArgIsa3-4 #$Collection )
454 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa3-4 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?INDEP-INS ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa3-5
455 (#$isa #$interArgIsa3-5 #$TernaryPredicate )
456 (#$arity #$interArgIsa3-5 3 )
457 (#$arg1Isa #$interArgIsa3-5 #$Predicate )
458 (#$arg2Isa #$interArgIsa3-5 #$Collection )
459 (#$arg3Isa #$interArgIsa3-5 #$Collection) 460 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa3-5 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?INDEP-INS ?ANY-ARG-4 ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa4-1
461 (#$isa #$interArgIsa4-1 #$TernaryPredicate )
462 (#$arity #$interArgIsa4-1 3 )
463 (#$arg1Isa #$interArgIsa4-1 #$Predicate )
464 (#$arg2Isa #$interArgIsa4-1 #$Collection )
465 (#$arg3Isa #$interArgIsa4-1 #$Collection ) 466 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa4-1 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?DEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa4-2
467 (#$isa #$interArgIsa4-2 #$TernaryPredicate )
468 (#$arity #$interArgIsa4-2 3 )
469 (#$arg1Isa #$interArgIsa4-2 #$Predicate )
470 (#$arg2Isa #$interArgIsa4-2 #$Collection )
471 (#$arg3Isa #$interArgIsa4-2 #$Collection ) 472 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa4-2 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?DEP-INS ?ANY-ARG-3 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa4-3
473 (#$isa #$interArgIsa4-3 #$TernaryPredicate )
474 (#$arity #$interArgIsa4-3 3 )
475 (#$arg1Isa #$interArgIsa4-3 #$Predicate )
476 (#$arg2Isa #$interArgIsa4-3 #$Collection )
477 (#$arg3Isa #$interArgIsa4-3 #$Collection ) 478 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa4-3 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?DEP-INS ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa4-5
479 (#$isa #$interArgIsa4-5 #$TernaryPredicate )
480 (#$arity #$interArgIsa4-5 3 )
481 (#$arg1Isa #$interArgIsa4-5 #$Predicate )
482 (#$arg2Isa #$interArgIsa4-5 #$Collection )
483 (#$arg3Isa #$interArgIsa4-5 #$Collection ) 484 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa4-5 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?ANY-ARG-3 ?INDEP-INS ?DEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa5-1
485 (#$isa #$interArgIsa5-1 #$TernaryPredicate )
486 (#$arity #$interArgIsa5-1 3 )
487 (#$arg1Isa #$interArgIsa5-1 #$QuintaryPredicate )
488 (#$arg2Isa #$interArgIsa5-1 #$Collection )
489 (#$arg3Isa #$interArgIsa5-1 #$Collection ) 490 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL) (#$interArgIsa5-1 ?PRED ?INDEP-COL ?DEP-COL) (?PRED ?DEP-INS ?ANY-ARG-2 ?ANY-ARG-3 ?ANY-ARG-4 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa5-2
491 (#$isa #$interArgIsa5-2 #$TernaryPredicate )
492 (#$arity #$interArgIsa5-2 3 )
493 (#$arg1Isa #$interArgIsa5-2 #$QuintaryPredicate )
494 (#$arg2Isa #$interArgIsa5-2 #$Collection)
495 (#$arg3Isa #$interArgIsa5-2 #$Collection)
496 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa5-2 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?DEP-INS ?ANY-ARG-3 ?ANY-ARG-4 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa5-3
497 (#$isa #$interArgIsa5-3 #$TernaryPredicate )
498 (#$arity #$interArgIsa5-3 3 )
499 (#$arg1Isa #$interArgIsa5-3 #$QuintaryPredicate )
500 (#$arg2Isa #$interArgIsa5-3 #$Collection )
501 (#$arg3Isa #$interArgIsa5-3 #$Collection ) 502 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa5-3 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?DEP-INS ?ANY-ARG-4 ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$interArgIsa5-4
503 (#$isa #$interArgIsa5-4 #$TernaryPredicate )
504 (#$arity #$interArgIsa5-4 3)
505 (#$arg1Isa #$interArgIsa5-4 #$QuintaryPredicate )
506 (#$arg2Isa #$interArgIsa5-4 #$Collection )
507 (#$arg3Isa #$interArgIsa5-4 #$Collection) 508 (#$implies (#$and (#$isa ?INDEP-INS ?INDEP-COL ) (#$interArgIsa5-4 ?PRED ?INDEP-COL ?DEP-COL ) (?PRED ?ANY-ARG-1 ?ANY-ARG-2 ?ANY-ARG-3 ?DEP-INS ?INDEP-INS ) ) (#$isa ?DEP-INS ?DEP-COL ) )
;;; #$relationExistsAll
509 (#$isa #$relationExistsAll #$TernaryPredicate )
510 (#$arity #$relationExistsAll 3 )
511 (#$arg1Isa #$relationExistsAll #$BinaryPredicate )
512 (#$arg2Isa #$relationExistsAll #$Collection )
513 (#$arg3Isa #$relationExistsAll #$Collection )
;;; #$relationExistsCountAll
514 (#$isa #$relationExistsCountAll #$QuaternaryPredicate )
515 (#$arity #$relationExistsCountAll 4 )
516 (#$arg1Isa #$relationExistsCountAll #$BinaryPredicate )
517 (#$arg2Isa #$relationExistsCountAll #$Collection)
518 (#$arg3Isa #$relationExistsCountAll #$Collection)
519 (#$arg4Isa #$relationExistsCountAll #$NonNegativeInteger )
;;; #$isa
520 (#$isa #$isa #$DefaultMonotonicPredicate )
521 (#$isa #$isa #$BinaryPredicate )
522 (#$arity #$isa 2 )
523 (#$arg1Isa #$isa #$ReifiableTerm )
524 (#$arg2Isa #$isa #$Collection )
525 (#$implies ( #$resultIsa ?F ?COL ) ( #$isa (?F ?ARG1 ?ARG2 ?ARG3 ) ?COL ) ) 526 (#$implies (#$resultIsa ?F ?COL ) (#$isa (?F ?ARG1 ?ARG2 ) ?COL ) ) 527 (#$implies (#$resultIsa ?F ?COL) (#$isa (?F ?ARG1 ) ?COL ) )
;;; #$ist
528 (#$isa #$ist #$BinaryPredicate )
529 (#$arity #$ist 2 )
530 (#$arg1Isa #$ist #$Microtheory )
531 (#$arg2Isa #$ist #$CycFormula )
;;; #$lispDefun
532 (#$isa #$lispDefun #$BinaryPredicate )
533 (#$arity #$lispDefun 2 )
534 (#$arg1Isa #$lispDefun #$EvaluatableFunction )
535 (#$arg2Isa #$lispDefun #$CycSystemSymbol )
;;; #$minimizeExtent
536 (#$isa #$minimizeExtent #$UnaryPredicate )
537 (#$arity #$minimizeExtent 1 )
538 (#$arg1Isa #$minimizeExtent #$Predicate )
;;; #$mtInferenceFunction
539 (#$isa #$mtInferenceFunction #$BinaryPredicate )
540 (#$arity #$mtInferenceFunction 2 )
541 (#$arg1Isa #$mtInferenceFunction #$Microtheory )
542 (#$arg2Isa #$mtInferenceFunction #$CycSystemSymbol )
;;; #$myCreationTime
543 (#$isa #$myCreationTime #$BinaryPredicate )
544 (#$isa #$myCreationTime #$BookkeepingPredicate )
545 (#$arity #$myCreationTime 2 )
546 (#$arg1Isa #$myCreationTime #$Thing )
547 (#$arg2Isa #$myCreationTime #$PositiveInteger )
;;; #$myCreator
548 (#$isa #$myCreator #$BinaryPredicate )
549 (#$isa #$myCreator #$BookkeepingPredicate )
550 (#$arity #$myCreator 2)
551 (#$arg1Isa #$myCreator #$Thing )
552 (#$arg2Isa #$myCreator #$Cyclist )
;;; #$negationAttribute
553 (#$isa #$negationAttribute #$SymmetricBinaryPredicate )
554 (#$isa #$negationAttribute #$IrreflexiveBinaryPredicate )
555 (#$genlInverse #$negationAttribute #$negationAttribute )
556 (#$arity #$negationAttribute 2)
557 (#$arg1Isa #$negationAttribute #$AttributeValue )
558 (#$arg2Isa #$negationAttribute #$AttributeValue )
;;; #$negationInverse
559 (#$isa #$negationInverse #$SymmetricBinaryPredicate )
560 (#$isa #$negationInverse #$IrreflexiveBinaryPredicate )
561 (#$genlInverse #$negationInverse #$negationInverse )
562 (#$arity #$negationInverse 2 )
563 (#$arg1Isa #$negationInverse #$BinaryPredicate )
564 (#$arg2Isa #$negationInverse #$BinaryPredicate ) 565 (#$not (#$and (#$negationInverse ?GEN-PRED ?PRED) (?PRED ?ARG1 ?ARG2) (?GEN-PRED ?ARG2 ?ARG1) ) )
;;; #$negationPreds
566 (#$isa #$negationPreds #$SymmetricBinaryPredicate )
567 (#$genlInverse #$negationPreds #$negationPreds)
568 (#$arity #$negationPreds 2 )
569 (#$arg1Isa #$negationPreds #$Predicate )
570 (#$arg2Isa #$negationPreds #$Predicate ) 571 (#$not (#$and (?PRED ?ARG1) (?NEG-PRED ?ARG1) (#$negationPreds ?NEG-PRED ?PRED ) ) ) 572 (#$not (#$and (#$negationPreds ?NEG-PRED ?PRED) (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5) (?NEG-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ?ARG5) ) ) 573 (#$not (#$and (#$negationPreds ?NEG-PRED ?PRED) (?PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4) (?NEG-PRED ?ARG1 ?ARG2 ?ARG3 ?ARG4 ) ) ) 574 (#$not (#$and (#$negationPreds ?NEG-PRED ?PRED) (?PRED ?ARG1 ?ARG2 ?ARG3) (?NEG-PRED ?ARG1 ?ARG2 ?ARG3) ) ) 575 (#$not (#$and (#$negationPreds ?NEG-PRED ?PRED) (?PRED ?ARG1 ?ARG2) (?NEG-PRED ?ARG1 ?ARG2) ) )
;;; #$not
576 (#$isa #$not #$Relationship )
577 (#$arity #$not 1 )
578 (#$arg1Isa #$not #$CycFormula )
579 (#$resultIsa #$not #$CycFormula )
;;; #$oldConstantName
580 (#$isa #$oldConstantName #$BinaryPredicate )
581 (#$arity #$oldConstantName 2 )
582 (#$arg1Isa #$oldConstantName #$Thing )
583 (#$arg2Isa #$oldConstantName #$CycSystemString )
;;; #$or
584 (#$isa #$or #$CommutativeRelation )
585 (#$isa #$or #$VariableArityRelation )
586 (#$argsIsa #$or #$CycFormula )
587 (#$resultIsa #$or #$CycFormula )
;;; #$relationAllExists
588 (#$isa #$relationAllExists #$TernaryPredicate )
589 (#$arity #$relationAllExists 3 )
590 (#$arg1Isa #$relationAllExists #$BinaryPredicate )
591 (#$arg2Isa #$relationAllExists #$Collection )
592 (#$arg3Isa #$relationAllExists #$Collection )
;;; #$relationAllExistsCount
593 (#$isa #$relationAllExistsCount #$QuaternaryPredicate )
594 (#$arity #$relationAllExistsCount 4 )
595 (#$arg1Isa #$relationAllExistsCount #$BinaryPredicate )
596 (#$arg2Isa #$relationAllExistsCount #$Collection )
597 (#$arg3Isa #$relationAllExistsCount #$Collection )
598 (#$arg4Isa #$relationAllExistsCount #$NonNegativeInteger )
;;; #$requiredArg1Pred
600 (#$isa #$requiredArg1Pred #$BinaryPredicate )
601 (#$arity #$requiredArg1Pred 2 )
602 (#$arg1Isa #$requiredArg1Pred #$Collection )
603 (#$arg2Isa #$requiredArg1Pred #$Predicate )
;;; #$requiredArg2Pred
604 (#$isa #$requiredArg2Pred #$BinaryPredicate )
605 (#$arity #$requiredArg2Pred 2 )
606 (#$arg1Isa #$requiredArg2Pred #$Collection )
607 (#$arg2Isa #$requiredArg2Pred #$Predicate )
;;; #$resultgenl
608 (#$isa #$resultgenl #$BinaryPredicate )
609 (#$arity #$resultGenl 2 )
610 (#$arg1Isa #$resultGenl #$CollectionDenotingFunction )
611 (#$arg2Isa #$resultGenl #$Collection )
;;; #$resultIsa
612 (#$isa #$resultIsa #$BinaryPredicate )
613 (#$arity #$resultIsa 2 )
614 (#$arg1Isa #$resultIsa #$Relationship )
615 (#$arg2Isa #$resultIsa #$Collection )
;;; #$satisfiesDescription
616 (#$isa #$satisfiesDescription #$TernaryPredicate )
617 (#$arity #$satisfiesDescription 3 )
618 (#$arg1Isa #$satisfiesDescription #$CycSystemList )
619 (#$arg2Isa #$satisfiesDescription #$CycSystemList )
620 (#$arg3Isa #$satisfiesDescription #$Microtheory )
;;; #$siblingDisjointExceptions
621 (#$isa #$siblingDisjointExceptions #$SymmetricBinaryPredicate )
622 (#$isa #$siblingDisjointExceptions #$IrreflexiveBinaryPredicate )
623 (#$genlInverse]] #$siblingDisjointExceptions #$siblingDisjointExceptions )
624 (#$arity #$siblingDisjointExceptions 2 )
625 (#$arg1Isa #$siblingDisjointExceptions #$Collection )
626 (#$arg2Isa #$siblingDisjointExceptions #$Collection ) 627 (#$implies (#$siblingDisjointExceptions ?C1 ?C2 ) (#$siblingDisjointExceptions ?C1 ?C2 ) )
;;; #$termOfUnit
628 (#$isa #$termOfUnit #$DefaultMonotonicPredicate )
629 (#$isa #$termOfUnit #$InferenceRelatedBookkeepingPredicate )
630 (#$isa #$termOfUnit #$BinaryPredicate )
631 (#$arity #$termOfUnit 2 )
632 (#$arg1Isa #$termOfUnit #$ReifiableTerm )
633 (#$arg2Isa #$termOfUnit #$CycSystemList )
;;; #$thereExistAtLeast
634 (#$isa #$thereExistAtLeast #$Relationship )
635 (#$arity #$thereExistAtLeast 3 )
636 (#$resultIsa #$thereExistAtLeast #$CycFormula )
637 (#$arg3Isa #$thereExistAtLeast #$CycFormula )
638 (#$arg2Isa #$thereExistAtLeast #$CycELVariable )
639 (#$arg1Isa #$thereExistAtLeast #$PositiveInteger )
;;; #$thereExistAtMost
640 (#$isa #$thereExistAtMost #$Relationship )
641 (#$arity #$thereExistAtMost 3 )
642 (#$resultIsa #$thereExistAtMost #$CycFormula )
643 (#$arg3Isa #$thereExistAtMost #$CycFormula )
644 (#$arg2Isa #$thereExistAtMost #$CycELVariable )
645 (#$arg1Isa #$thereExistAtMost #$PositiveInteger )
;;; #$thereExistExactly
646 (#$isa #$thereExistExactly #$Relationship )
647 (#$arity #$thereExistExactly 3 )
648 (#$resultIsa #$thereExistExactly #$CycFormula )
649 (#$arg3Isa #$thereExistExactly #$CycFormula )
650 (#$arg2Isa #$thereExistExactly #$CycELVariable )
651 (#$arg1Isa #$thereExistExactly #$PositiveInteger)
;;; #$thereExists
652 (#$isa #$thereExists #$Relationship )
653 (#$arity #$thereExists 2 )
654 (#$arg2Isa #$thereExists #$CycFormula )
655 (#$arg1Isa #$thereExists #$CycELVariable )